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TARGET DISCRIMINATION/CLASSIFICATION RADAR
1.0 PURPOSE OF STUDY

It was proposed to investigate the use of Low Probability of Detection/Super Wide Band (LPI/SWB) ra-
dar systems operating from airborne platforms for target discrimination/classification. These LPI/SWB radar
systems would have a transmitted percent bandwidth on the order of 1% to 10%, and they would make use
of pulse compression techniques. The radar envisioned would obtain its target discrimination/classification
capability by exploiting the dissimilarities that exist between the scattering characteristics of various radar
targets of interest. In other words, the radar would have a library of target specific signals that it would be
capable of transmitting and processing. Each signal in the library would be constructed in such a manner
as to excite a large reflection from a specific target while exciting a minimal reflection from other targets.
Therefore, when a target is detected, the entire library could be used to interrogate the target, and the signal
that excited the largest response would have the highest probability of being the target associated with the
target specific signal.

The system would achieve its LPI characteristics by passing the target specific waveforms generated by
the target library through a pulse expansion filter. The expanded waveform would then be up—converted and
transmitted. The expanded target specific signal would then excite the target and the reflected energy would
be received and down—converted. The down—converted signal would then be passed through a pulse—com-
pression filter (which is the time reversal of the pulse—expansion filter) to obtain the minimally corrupted
response of the target to the target specific signal. The system would be similar to a conventional pulse com-
pression system, and it differs only in that the standard pulse compression system excites the pulse expansion
filter with an impulse and the LPI/SWB system excites the pulse expansion filter with the target specific sig-
nal.

It was anticipated that this investigation would be achieved in three steps:

1) Various LPI/SWB radar implementations would be rigorously investigated to determine which
method has the most promise in the application described above.

2) The scattering characteristics of various target geometries of interest would be investigated to
determine exactly how they may be exploited.

3) The information learned in the studies outlined above would be combined to determine guidelines
that can be used in the design of specific radar systems to accomplish the target discrimination/
classification task described above.

Task 1 involved an investigation into various types of pulse compression radar systems (PSK, FSK and
Hybrid FSK/PSK) to determine their limitations and beneficial qualities. Some of these qualities investi-
gated were achievable bandwidth, low probability of intercept capability. and the spectral purity of the pulse
expansion filter. Task 2 involved the development of accurate computer models of generic targets for genera-
tion of target scattering characteristics. This involved the use of existing exact solution techniques that could
be used for resonant region analysis (or the region at which the target size is on the order of a wavelength),
and the development of approximate solution programs for optical region analysis (or the frequency region
where the target extends for many wavelengths). Task 3 involved using the tools developed in Tasks 1 and
2 to determine the optimum implementation of a LPI/SWB radar. This was basically an analysis of model
systems to determine performance levels as target discrimination/classification systems.




2.0 SUMMARY AND CONCLUSIONS OF RESEARCH

The purpose of this study was to develop a signal processing scheme that would combine the separate
research efforts of low probability of intercept signaling, low altitude low observable target tracking, and non-
cooperative target recognition into a single research effort. The end result of this fusion is a new radar design
concept designated adaptive FSK/PSK signaling. Anadaptive FSK/PSK radar system makes use of matched
FSK/PSK signals in conjunction with a gradient descent adaptive signal design algorithm. Matched FSK/
PSK signals are ultra wideband pseudorandom multiple frequency bi-phase modulated signal sequences that
have spectral content specifically matched to the target under track. This use of target—specific information
in the design of radar signals is the salient point of this research effort. It allows for more efficient use of signal
power and results in a performance improvement over existing radar technologies that are matched to the
transmit signal only. Since the spectral content of the target is not known a priori, the target range profile
must be learned by the radar. This matching of the signal to the target is accomplished through the use of
an iterative (adaptive) algorithm that is based on gradient descent. Once the radar has adapted to the target
(learned the target), the range profile of the target is known and target identification can take place based on
the learned range profile. Therefore, an adaptive FSK/PSK radar system can be thought of as a learning sys-
tem as opposed to a measurement system. In other words, the radar measurement is improved as a result of
the learning process.

The pseudorandom sequence structure of the matched FSK/PSK signal, along with its high time—band-
width product, makes the radar inherently difficult to detect. Therefore, the signals can be classified as low
probability of intercept. Additionally, since the transmitter power is used in a most effective manner (signal
efficiency is maximized by target matching), lower peak power signals can be utilized by the radar. This re-
sults in an additional improvement in LPI performance.

In an additive noise environment, matched FSK/PSK signaling provides a signal processing gain over
a baseline radar that utilizes a signal with an impulse—like ambiguity function. This performance improve-
ment results from the fact that the signal power is utilized in an efficient manner and the target reflection is
enhanced without enhancing the additive noise. The level of signal processing gain is dependent upon the
spectral complexity of the target. If the target reflects all frequencies equally well, little processing gain is
seen. On the other hand, if the target reflectivity is concentrated in a few isolated frequency bands, then the
processing gain can be large (on the order of the square of the number of frequencies used in the signal).

In a ground clutter limited environment, matched FSK/PSK signaling performs better than conventional
radar technologies that do not take into account any target specific information. This occurs because the
matched FSK/PSK radar system is capable of achieving a theoretical target enhancement of between 1 and
K2 while the integrated sidelobe level is increased by a factor of between 1 and K where K is the number of
frequencies used in the construction of the signal. Therefore, in a clutter limited environment, adaptive FSK/
PSK radar systems can achieve performance improvement factors of between 1 and K. It should be noted
that a matched FSK/PSK radar system and a conventional radar system using a matched filter post-processor
are able to achieve identical performance in a clutter limited environment.

Analysis of predicted real target signature data shows that the use of target—specific information in the
design of the radar signal typically yields average signal to noise ratio improvements of between 3 dB and
6 dB depending on the target. In a clutter limited environment, typical improvements are between 2 dB and
5 dB. These improvements are closer to the low end of the theoretically possible performance improvements.
This is result of the uniform nature of optical region target spectra. The gains, however, are significant and
provide a significant performance increase. It should be pointed out that in the resonance region, greater gains
are expected since resonance region spectra are typically impulse-like.

The adaptation algorithm derived in the research (See Chapter VIII of the Appendix) provides a method
of not only designing the optimum signal to excite the maximum response from the target, but also for mea-
suring the best mean squared estimate of the target range profile. Through computer simulations, it was
shown that the adaptation algorithm removes additive noise. The level of noise removal is dependent on the
value of the learning parameter. The smaller the learning parameter (slower the learning rate), the better the
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mean squared estimate. The simulations also show that the random fluctuations of the target range profile
due to random range motion and random incidence angle motion increase the mean squared error of the esti-
mate. If the learning rate is high enough for the adaptive algorithm to learn the target range profile before
the profile decorrelates, then the errors are small. If on the other hand, the target decorrelates more rapidly
than the algorithm can learn, range profile estimation errors are increased. This results in decreased target
enhancement due to matched FSK/PSK signaling. It should be pointed out that the performance metric used
in this study (the mean squared range profile error) is biased towards stationary (nonfluctuating) targets. It
is difficult to ascertain the deleterious effects of range profile fluctuations on an actual target identification
algorithm. The effects may be insignificant since the adaptation algorithm determines a best mean squared
fit to the second order statistics of the random target fluctuation process within the learning period of the algo-
rithm. Itis of interest to note that a linear averaging scheme would yield a zero result for range profile estima-
tion since the phase angle of the returns is random from measurement to measurement.

In conclusion, adaptive FSK/PSK signaling radar is an excellent platform for fulfilling the future mission
of radar: low probability of intercept noncooperative target recognition. It utilizes low probability of inter-
cept signals in a spectrally adaptive manner. The ability of the radar to adapt its spectrum makes it possible
to enhance targets thus improving system performance in additive noise environments and ground clutter lim-
ited environments. Finally, the adaptation scheme derived in this study is capable of extracting the range
profile of the target under track. This is important for target identification since it is the range profile that
is the feature vector used by most target identification algorithms.

In the work performed, a series of equations were derived to model the Radar Performance for Target
Return, Signal-to—Clutter and Bandwidth Loss for three cases. These three cases are a Baseline Radar (Cor-
relation) Receiver, a Matched Filter Radar Receiver, and a Matched FSK/PSK Radar Receiver. The Table
below summarizes the equations with equation numbers referencing Chapter VII of the Appendix.

Performance estimates for specific target scenarios are contained in Chapter VII for Appendix, Table 7.1,
page 91.

Summary of Radar Performance Equations.

Baseline Matched Filter Matched FSK/PSK
Target Return
x-1 K-l K-
L | (o e ! %o
s ) =0
T —
K K-t . § JOT
Equation (7.4) Equation (7.9) Equation (7.18)
Signai to Clutter
£ 2 K-t K-
'le“- ) {;‘-e,un-n‘) § a, g o,
Equation (7.7) Equation (7.15) Equation (7.22)
Bandwidth Loss None None
1
max { p,
Equation (5.14)
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CHAPTER 1

INTRODUCTION

Radar was first used as a military sensor system during World War II when it
came into prominence during the air war over Britain. These early radar systems were
able to locate the direction and distance (azimuth and range) of attacking waves of
German bombers while they were still well beyond visual range. This location
information made it possible to deploy the outnumbered Royal Air Force fighter wings
in a more effective manner and thus, the Battle of Britain was won. By the end of the
war, the state-of-the-art in radar had advanced significantly and included fire control
radar for anti-aircraft artillery. These radar systems were able to automatically track
the range, range-rate, azimuth, and elevation of a target.

During the late 1940’s and 1950’s, the role of radar technology remained
basically unchanged. Developments in radar were primarily devoted to codifying radar
design principles [1] and expanding the underlying mathematical theory of radar [2].
During the 1960’s and 1970’s, the new technologies of solid state devices and digital
computing were implemented into radar systems making them smaller, more power
efficient, and basically more capable. Still, technology had not advanced to the extent

that the role of World War II era radar would be changed significantly change.




The 1970’s and 1980’s saw the advent of two new radar design requirements:
tracking of stealth (or low observable) aircraft and anti-radiation missiles. Stealth
technology drove research into the area of radar signal designs capable of tracking low
radar cross section targets buried in ground clutter returns. The goal of these signal
designs was waveforms capable of rejecting the range extended ground clutter return
[3, 4, 5, 6] primarily by lowering the range sidelobes of the radar signal ambiguity
function. These clutter suppression efforts assumed that the radar target of interest
was localized to a point-like range extent (point target assumption) and therefore,
reflected all waveforms equally well. Anti-radiation missiles drove research into the
area of signal designs that made it more difficult for a radar warning receiver to detect
the existence of the radar signal (low probability of intercept signaling) [7]. In other
words, the radar signals themselves were forced to become stealthy. This led to pulse
compression signals that utilized random frequency and phase coding to provide a
signal processing gain to the radar. This signal processing gain was typically
measured by the time-bandwidth product of the waveform [7, 8, 9].

The late 1980’s and 1990’s have seen an interest in expanding the role of
radar. Instead of radar simply being a detection device, radar systems capable of
identifying targets [10] are of interest. In other words, modern radar systems will be
required to extract more information from targets. Therefore, there is an increased
interest in so-called ultra wideband radar concepts [10]. Ultra wideband radar
concepts can be classified into two types of radar signaling regimes [11]: impulse

radar for resonant frequency extraction and high range resolution waveform signaling.




Resonant region radars try to identify targets based on the extraction of the
natural resonant frequencies excited by a broadband pulse of electromagnetic radiation
[12, 13, 14, 15, 16]. These resonant frequencies are target-specific and are therefore
good classification features. The problem with this technique is that the radars are
required to operate in the VHF and low UHF frequency bands and therefore, the radar
systems are very large and unwieldy. Additionally, the percent bandwidth of the
waveforms used must be very high (multi-octave signaling desirable) and Doppler
processing becomes ineffective for ground clutter removal.

High range resolution radar systems identify radar targets based on the location
of scattering centers [17, 18]. In other words, the range resolution of the radar is such
that the individual scattering components of the target can be resolved. These radar
systems operate in typical radar frequency bands (above 1 GHz), but use higher than
typical signal bandwidths. High range resolution radar systems have the advantage of
small size, narrow antenna beamwidths, and a higher degree of Doppler precision.
The disadvantage of high range resolution radar systems is that the range profiles are

highly dependent upon target aspect angle and a large amount of data is required to

describe each individual target in a target database [17, 18].

1.1. Combining Goals

Future radar systems will use low probability of intercept (LPI) waveforms to
track and identify low observable targets. Therefore, the development of radar target
identification techniques must be accomplished within the confines of the requirements

on low observable target tracking and signal detectability by hostile interceptors. In
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the past, research in these three areas has progressed in separate directions. Research
into low observable target tracking has been based on the assumption that radar targets
are point targets (single point scatterer) while ground clutter is range extended.
Therefore, design techniqués have focused on designing waveforms that are matched
to point targets yet reject distributed clutter targets. Target identification algorithms,
on the other hand, make use of the range extended nature of radar targets [17, 18]
(i.e., each target scatters radiation differently). A question therefore arises; should low
observable target tracking research focus on enhancing the return from distributed
radar targets by making use of target-specific information as well as suppressing
clutter? In short, is it possible for the range extended target-specific information to be

utilized to the radar’s advantage?

k4

1.2. Scope of Study

The purpose of this study is to combine the three different research efforts
related to low observable target tracking in clutter, LPI signal design, and target
identification into a single research effort. In this study, a pulse compression
technique designated "matched FSK/PSK" [21] is introduced. Unlike conventional
signaling techniques, matched FSK/PSK signaling makes it possible to not only
suppress clutter returns, but also to enhance the target return. The target return
enhancement is accomplished by making use of target-specific information in the
signal design process. Since target enhancement requires a priori knowledge about the
range profile of the particular target, an iterative signal design technique [22] is

introduced. This is a nonlinear design technique that effectively extracts the target’s




range profile over time and can be thought of as a measurement technique. The
extracted target range profile is a usable feature for target identification purposes.
When matched FSK/PSK is used in conjunction with the iterative design algorithm,
the resulting system is designated "adaptive FSK/PSK". This study is theoretical in
scope since a treatment of hardware implementation issues would tend to mask the
fundamental principles involved. Realistic target modeling is used, however, to

acquaint the reader with typical achievable performance improvements.

1.3. Organization of Study

This study is organized in the following manner. Some fundamentals of radar
and radar signal processing are presented briefly in Chapter II. The concepts of pulse
compression, radar-interceptor advantage, range smearing, ground clutter analysis with
the cross-ambiguity function, as well as radar scattering regimes are discussed in
general terms in order to standardize terminology and to develop a basis for presenting
and solving the problem. In Chapter III, the cross-ambiguity function [20] is
discussed in general with respect to radar-target interaction, noise removal and
resolution, and specifically with respect to FSK/PSK signaling. The cross-ambiguity
function of the FSK/PSK waveform is analyzed probabilistically in Chapter IV. This
analysis includes a mean and mean squared analysis of the mainlobe of the cross-
ambiguity function, mean and mean squared analysis of the cross-ambiguity function
sidelobes, and evaluation of the integrated mean square sidelobe level of the cross-
ambiguity function (a baseline measure of clutter rejection). The power spectral

density and equivalent time-bandwidth product of an FSK/PSK radar signal are




derived in Chapter V. In Chapter VI, the probabilistic analysis of Chapter IV is used
to develop a design methodology for matched FSK/PSK radar based on a known
arbitrary range profile. The performance gain of matched FSK/PSK over a
conventional signaling radar system that utilizes no target-specific information is
determined in Chapter VII. The performance metrics used in the study are the target
enhancement, signal to noise ratio, and signal to clutter ratio of matched FSK/PSK
relative to a baseline conventional radar. These performance gains are calculated for
both theoretical target scattering distributions and for some predicted target data. An
iterative signal design technique is derived in Chapter VIII. This technique is derived
based on gradient descent optimization of the mean squared reflected voltage. This
gradient descent adaptive signal design scheme is also studied parametrically in
Chapter VIII. This parametric study illustrates the effect of additive white noise,

target range motion, and target angular motion. Concluding remarks and suggestions

for future work are discussed in Chapter IX.
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CHAPTER II

RADAR FUNDAMENTALS

In this chapter, several fundamentals of radar systems analysis are discussed
primarily to introduce notation and for proper problem formulation. These
fundamental topics are: 1) signal to noise ratio (SNR) at the radar receiver and at the
intercept receiver (receiver-interceptor advantage), 2) pulse compression, 3) range
resolution, 4) velocity or Doppler resolution, 5) range smearing, 6) range-doppler
trade-offs, and 7) ground clutter analysis with the cross-ambiguity function.
Additionally, an overview of radar scattering fundamentals, as related to target
identification, is given. These limits and bounds are not derived in detail, only
discussed in relation to the problem of LPI tracking and identification of low
observable radar targets.

Figure 2.1 graphically shows all components of the problem that are points of
interest in this study. A waveform y(z) is transmitted from the radar antenna. A
portion of the energy is reflected by the target while another portion is reflected by the
surface of the earth. The energy reflected from the earth is referred to as clutter as it
is an unwanted return. The received signal and clutter is also contaminated with
additive noise from various sources such as thermal noise, the sun, other radars and

communication equipment in the area, and hostile jamming equipment. Once the
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Figure 2.1.  General Radar Block Diagram Showing the Target and a Clutter
Contaminant.

signal is received by the antenna, it is passed to a signal processor that processes the
waveform and separates out the returns by range and Doppler (velocity). Typically the
clutter is stationary whereas the target is moving toward or away from the radar.
Therefore, the target and clutter theoretically can be separated based on relative
velocity. In reality, however, measurement of range and velocity are not perfect, and
clutter can obscure the moving target. This will be discussed in more detail later in

this chapter.

2.1. The Radar Equation

The radar equation, which describes the signal to noise ratio of the processed

received waveform is given by
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PG No
@ny R* N, B,

SNR, = @.1)

where P, is the transmitter peak power, G, is the antenna gain, A is the radar
wavelength, o is the effective radar cross section of the target within the radar
bandwidth, N, is the noise power spectral density, B, is the processor bandwidth, and

R is the range to the target. A substitution of

41 A,

(2.2)
r KZ

where A, is the antenna effective aperture, into (2.1) yields the following equation in

terms of the antenna aperture and wavelength

P Al
SNR, = e O . (23)
(4m) A* R* N, B,

Therefore, for a fixed antenna aperture A,, the received power increases with
decreasing wavelength.

The signal to noise ratio for a intercept receiver on board the target being
illuminated by the radar is given by

P, G, G, \
B, (4n)RZN,

SNR. =

i

(2.4)

where G, is the antenna gain of the intercept receiver and B, is the radiated bandwidth
of the radar signal. In Equation (2.4), the noise levels are assumed to be the same in

both the intercept receiver and the radar receiver and the intercept receiver is assumed
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to be in the mainlobe of the radar antenna. It is also assumed that the radiated
bandwidth of the radar signal is much greater than the bandwidth of the intercept
receiver signal processor. An important quantity is the ratio of the radar SNR to the
intercept receiver SNR. This is known as the radar-interceptor advantage o and is

given by

SNR G B
|l )=
The radar-interceptor advantage is important because it relates the performance of the
radar to the performance of the radar’s enemy (the intercept receiver). Signal to noise
ratios are used because they typically describe the "bottom line" of system
performance. Therefore, if the radar requires a minimum signal to noise ratio of
SNR,,;, to meet its specified performance level, and the intercept receiver requires a

minimum signal to noise ratio of SNR,,,, to meet its specified performance criterion,

the radar system will have an advantage over the intercept receiver if

SNR_.
o> mn (2.6)
SNRimin

(assuming the minimum radar SNR has been achieved). Otherwise, the intefbept
receiver is said to have the advantage. Solving Equation (2.5) for the range R, at

which the radar achieves an advantage over the intercept receiver yields

G B 2.7
e (2o 252 @)
. CX,O
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where o, is the minimum radar-interceptor advantage satisfying Equation (2.6).
Therefore, if the minimum SNR for the radar can be lowered, the operable range of
the radar can be increased. Notice that there is a 5 dB/decade improvement in range
versus radar signal to noise ratio improvement. Notice also that there are three factors
available to the radar designer in Equation (2.7) that improve radar performance:
antenna gain G, relative to the intercept receiver antenna gain G, radar radiated
bandwidth B, relative to the radar receiver processor bandwidth B,, and possibly the
effective radar cross section ¢ of the target. The antenna gain parameter is a hardware
parameter that is fixed by the operating frequency of the radar along with the physical
dimensions of the antenna. The ratio of radiated bandwidth to processor bandwidth is
a signal processor dependent parameter that can be improved by utilizing advanced
signal processing schemes such as pulse compression. The effective radar cross
section of the target is typically thought of as a parameter that is fixed by the target.
In this study, however, signal processing schemes will be introduced that make use of
target-specific information in order to increase the effective radar cross section of the
target thus increasing the LPI performance of the radar. Therefore, effective radar
cross section can be thought of as a design parameter available to the radar designer.

In this study, only signal processing gains are investigated.

2.2. Pulse Compression
Pulse compression is a signaling technique in which a signal of duration 7, and
bandwidth B, is transmitted and the reflected waveform is compressed through a

matched filter into a pulse of duration //B,. This makes it possible for a radar to
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transmit a long duration low peak power signal that can be compressed into a short
duration high peak power signal. This is shown graphically in Figure 2.2. Another
interpretation and implementation of pulse compression involves the use of a

correlator. When a correlator is used for despreading, the signal of bandwidth B, is
collapsed into a signal of bandwidth 1/T,. This is shown graphically in Figure 2.3.

For a pulse compression radar, Equation (2.5) becomes

o= o(Ber)(_l_M_l-J | 28)
G, 4n R?

Since B,T, is always greater than unity if there is any pulse compression effect, the
radar-interceptor advantage is always increased. Pulse compression is desirable
because it allows a radar to have the range resolution of a short pulsewidth radar

signal with the peak power requirements of a long pulsewidth radar signal.

2.3. Range Resolution

The range resolution of a radar is defined to be the minimum distance between
two point targets at which the radar can determine that there are two targets and not
one. This is shown graphically in Figure 2.4. The range resolution AR of a radar

transmitting a signal with a bandwidth B, is given by [1, 2]

AR = _5_ (2.9)

where c is the speed of light. Therefore, as the bandwidth of the signal increases, the

range resolution increases.
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2.4. Doppler Resolution

Doppler resolution (or precision) is the minimum difference in the velocity of
two targets at which the radar can determine that there are two targets and not one.
This is shown graphically in Figure 2.5. The Doppler resolution Av of a radar
transmitting a signal of duration T, is given by

Av = S . (2.10)
2 fo Td

Therefore, the ability of a target to discriminate (or separate) two targets moving at
two different velocities is related directly to the duration of the signal and the carrier

frequency of the radar.

2.5. Range Smearing
The previous two identities would lead one to believe that the key to radar
performance would be to have an infinite bandwidth infinite duration signal.
Physically this cannot occur because of range smearing. Range smearing occurs with
pulse compression radars when a target moves an appreciable portion of a range
resolution cell during the signal duration. To prevent range smearing the following

equation must be satisfied

v e 2.11)
2 © 2B

where v is the target velocity where the < is interpreted as less than by a factor of at
least 10. Solving Equation (2.11) for the velocity in terms of the time-bandwidth

product BT, yields




Figure 2.5.
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(2.12)

Therefore, the maximum time-bandwidth product of a signal is limited by the
maximum target velocity of interest.
According to Equation (2.12), if a radar is to process targets that have a

maximum velocity of v,,, then the time-bandwidth product should be chosen to be

BT, =.1 . . (2.13)

Substituting this value of B,T, into Equation (2.6) yields
a=| Zlol i |[LY(L) . (2.14)
G, Ve 4r R?

As seen in Equation (2.14), the larger the velocity of interest, the lower the radar-

interceptor advantage. Notice that the maximum achievable time-bandwidth product

for a 300 m/s target is 100,000. This is equivalent to a 50 dB processing gain. Also

notice that the maximum possible processing gain decreases at 10 dB/decade with

increasing velocity. This results in a 5 dB/decade usable range improvement.

2.6. Range-Doppler Trade-Off

It is of interest to investigate the product of range resolution and Doppler

resolution. The range-Doppler resolution product is given by
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C2

AVAR = .
4f BT,

(2.15)

Since the speed of light is constant, and it is assumed that the carrier frequency f, is
fixed by the radar hardware, the range-Doppler resolution product is fixed by the time-
bandwidtﬁ product. Therefore, for a fixed time-bandwidth product B,T,, range
resolution must be traded for Doppler resolution or vice versa. So, for a fixed time-
bandwidth product, a high range resolution radar signal will have to come at the

expense of reduced Doppler resolution.

2.7. The Cross-Ambiguity Function and Clutter Analysis

When a radar transmits a signal, the reflections do not come from the target
alone. There are other competing reflections that tend to obscure the wanted target
reflection. These unwanted reflections are typically referred to as clutter returns.

A general analysis tool that is used to describe the response of a radar to any
given clutter distribution is the cross-ambiguity function [3] of the radar. The cross-
ambiguity function ¥, describes the output of a radar to a point target located at any

arbitrary range delay t and Doppler frequency f, and is given by

17 .
LT ) = = i @) y(t-1) e dr . 2.16)

Properties of the cross-ambiguity function will be discussed in detail in Chapter IIL
The ideal radar signal would have an impulsive cross-ambiguity function. In

other words, targets at the appropriate range and velocity would give a maximum
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response, while all other targets would yield no response. The ideal signal, however,
is impossible to generate. Stewart and Westerfield [4] investigated the cross-
ambiguity functions four general signal classes: long pulses, short pulses, linear
frequency modulated pulses, and pseudo-random coded pulses. Density plots of these
four signal cross-ambiguity functions are sketched in Figure 2.6. The shaded portions
of the plots represent the range-Doppler regions to which the radar will respond. The
long pulse, short pulse, and frequency modulated cross-ambiguity densities are
confined to a single ellipsoidal mainlobe that is 1/B, in width along the range axis and
1/T, in width along the Doppler axis. The ellipsoid, however, spans over a portion of
the surface B, wide in Doppler and T, wide in range. It should be noted that for the
uncoded signals (the long pulse and short pulse) that BT, = 1 (i.e., no pulse
compression). The pseudo-random cross-ambiguity function density has a central
spike with a width of 1/B, along the range axis and 1/T, along the Doppler axis.
Additionally, it has a uniform pedestal region that is 1/B,T, high and spans over a
width of B, in Doppler and 7, in range. In other words, the long pulse, short pulse,
and frequency modulated radars will respond strongly to targets or clutter at range and
Doppler values within the mainlobe only. For the pseudo-random signal, the radar
will respond strongly to targets at the appropriate mainlobe range and Doppler, and
will respond in a weak random manner for targets or clutter in the pedestal region.
Typically, it is assumed that the wanted target is a point at the origin of the
range-Doppler plane, while clutter is distributed in range and Doppler. Most often, it

is assumed that clutter is localized in Doppler and distributed along the range axis as
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Figure 2.6.  Generic Cross-Ambiguity Functions for Four Signal Types.
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shown in Figure 2.7. A good measure of clutter rejection for this clutter distribution
(for waveform comparison purposes only) is therefore, the integrated sidelobe level

(ISL)

ISL (f,) = f PRGALT I (2.17)

The integrated sidelobe level is the clutter rejection figure of merit that will be used
throughout this study. It is not a generalized figure of merit, and does not apply to
every specific clutter distribution. It does, however, serve as a useful figure of merit

for the purposes of comparing the performance of different waveforms.

2.8. Radar Scattering Phenomenology

The scattering of radar waves from térgets is characterized by three different
regions that are dependent upon the ratio of the target’s size L to the radar wavelength
A. The Rayleigh region is associated with target lengths that are much less than a
wavelength, or L « A. The resonance region is associated with targets whose lengths
are on the order of a wavelength L~A. The optical region is associated with targets

that are much larger than a wavelength L>A.

2.8.A. Rayleigh Region Scattering Characteristics
In the Raleigh region, scattering phenomena are described by the quasi-static

dipole moment of the target [5]. In general, the scattered field changes with square of
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the frequency of the excitation

E «fl . (2.18)
Since the wavelength is much larger than the target length, Rayleigh scattered returns
have the advantage of being aspect independent but they convey little target-specific
information. Additionally, low frequency signals make it difficult to perform Doppler
processing and high-gain narrow-beamed antennas are almost impossible to build since
the half-power beamwidth is given roughly as the ratio of wavelength to aperture
length (Equation (2.2)). As an example of a Rayleigh scattering target, a target that is
15 meters in length would exhibit Rayleigh scattering for frequencies lower than 2

MHz. Therefore, the Rayleigh region is not of interest for target identification

purposes.

2.8.B. Resonance Region Scattering Characteristics
The resonance region is defined by the ratio of target length to wavelength on

the order of 1 so that

1<%<10 . (2.19)

Resonant region scattering is typically described by highly damped resonant modes.
These modes result from the waves circumnavigating the various portions of the target.
Therefore, the frequencies of the modes are related to the physical size of the different
scattering structures. Theoretically, since the resonant modes are related to the

physical scattering structure dimensions, resonant mode scattering is excellent for
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target identification purposes [6, 7, 8, 9, 10]. The mode locations are relatively aspect
dependent since the scattering structures are still a small number of wavelengths in
physical dimension. A radar to excite resonant modes, however, would have similar
problems to a Rayleigh region radar. Since the wavelength is on the order of the
target’s physical dimension, the radar antenna would have to be much greater than the
target dimensions for the antenna to achieve a narrow beamwidth and high gain. |
Additionally, Doppler resolution would not be sufficient for clutter rejection. As an
example of a resonant mode radar, the radar would operate in a band from 20 MHz to
200 MHz for a 15 meter target. From Equation (2.2), the radar antenna would have to
be on the order of 200 meters per dimension to achieve a 30 dBi gain at the low end

of the frequency spectrum.

2.8.C. Optical Region Scattering Characteristics

The optical region is defined by

L, . (2.20)

A
Optical region scattering is defined by impulses in the time domain and complex
exponentials in the frequency domain. The location of the impulses in the time
domain are associated with physical scattering centers of the target. These scattering
centers vary rapidly with target aspect angle, but they do provide good features for
target identification purposes [11, 12]. Since the wavelength is small, radar antenna
sizes can be reduced and Doppler processing can be used for clutter removal. The

disadvantage is that the scattering centers are highly aspect dependent (more so at
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higher and higher ffequency), and therefore, a large amount of data is required to

describe the target. The aspect dependence is given by the angular sampling criterion

(11]

e M. 2.21)
aL

Equation (2.21) is required for coherent data processing. For noncoherent processing,

the criterion can be relaxed to [11]

AB < :‘é‘. (2.22)

where AR is the range resolution of the radar. Coherent scattering data provides a
better feature vector for target identification than noncoherent data [12] but at the
expense of a much larger data storage requirement. As an example, consider a 15
meter target and a .15 meter wavelength (corresponding to f, = 2.0 GHz). The
angular sampling criterion of Equation (2.21) says that for the target to be sampled

properly in angle, the target signature must be sampled every

0 <« .___15__ = 0.0025 radians
@ (15) | 2.23)

= 0.14°
Therefore, the high antenna gain and Doppler processing capability come at the

expense of a rapidly varying target. For a 15 meter target and 1 meter resolution,

noncoherent processing would require
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1 .
AB < =" 0.067 radians (2.24)

= 3.84°
Therefore, coherent processing means that 3.84/0.14 = 27.4 more data is required for
database storage purposes per angular dimension for a target identification algorithm.
To describe the entire target, (27.4)* = 751 times more data is required for coherent
data. In general, the ratio of coherent discritization to noncoherent discritization is
given by

A6, 4 AR
A6, A

(2.25)
Therefore, the larger the number of wavelengths per range resolution cell, the more
data will be required for target storage.

It is important to note that target identification requires a signal bandwidth
sufficient to resolve individual scattering centers on a given target (i.e., UWB
waveforms). This typically has not been assumed in studies aimed at improving signal
to clutter ratios. For this reason, signal to clutter ratios have been improved only by
suppressing clutter returns (lowering the ISL). It seems that a logical fusing of signal
to clutter enhancement and target identification should include enhancing the target
return as well as suppressing the clutter return. This enhancement could be
accomplished by designing signals with cross-ambiguity functions with mainlobes that

cause the scattering centers to sum coherently rather than simply measuring the

location and energy from each. This enhancement would have to come without
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increasing the ISL in a like manner. This concept will be addressed in detail in this

study.

2.9. Conclusions

The range at which an LPI radar obtains an advantage over an intercept
receiver is extended by increasing the time-bandwidth product of the radar waveform
and by enhancing the reflectivity of the target. The time-bandwidth product is limited
by maximum velocity of interest to the radar, therefore the radar-interceptor advantage
gained from increasing the time-bandwidth product is limited by target velocity. The
next logical step in improving the radar-interceptor advantage is therefore, target
enhancement through the use of target-specific information.

The clutter rejection performance of a waveform is quantified, for general
comparative purposes, by the integrated sidelobe level (ISL) of the cross-ambiguity
function. This is true specifically for the case of range-distributed Doppler-
concentrated clutter. Additionally, the cross-ambiguity of a pseudo-random LPI
waveform is comprised of an impulse-like target-specific and a uniformly distributed
pedestal. The pedestal region is the primary source of clutter contamination.

Finally, to implement a realistic radar target identification technique, the only
practical target scattering regime is the optical region because of the requirements on
Doppler resolution and antenna gain. This advantage comes at the expense of an
increasingly complex target scattering description. Additionally, the target description
for a coherent processor is much more complex that of a noncoherent processor

éssuming that the range resolution of the radar is many wavelengths.
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CHAPTER III

ANALYSIS OF A GENERAL FSK/PSK RADAR SYSTEM

In this chapter, the radar cross-ambiguity function [1, p. 153-157] will be
discussed. The cross-ambiguity function describes the response of a radar system to
an impulse-like target (or point target) located at an arbitrary range and Doppler shift.
In this sense, the cross-ambiguity function can be thought of as the impulse response
of the radar. The cross-ambiguity function is the general case of the radar ambiguity
function [1, pp. 118]. The ambiguity function is also referred to as the matched-filter
response, and the uncertainty function [2]. The cross-ambiguity function is also
related to the cyclic cross-correlation function as discussed in [3, pp. 369-373].

In Section 3.1, general properties of the cross-ambiguity function that are
particularly applicable to radar system analysis is be derived First, the cross-
ambiguity function of two signals is defined along with a discussion of the underlying
assumptions made during its derivation. Second, the volumetric distribution of the
cross-ambiguity function is analyzed for a general ﬁs'yxstem. Third, the property of
linearity is proven. Fourth, the éffect of convolving one of the two signals with an
impulse response on the cross-ambiguity function is investigated. Fifth, the effect of
signal repetition, or periodicity, on the cross-ambiguity function is studied. Finally,

the effect of additive stationary noise on the cross-ambiguity function is determined.
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In Section 3.2, a general FSK/PSK radar system diagram is presented that

includes the effects of the target transfer function, delay, and motion. This system
diagram is analyzed using the properties derived in Section 3.1. In conclusion, is be
seen that the interaction between the target and the radar is defined by the correlation

of the radar cross-ambiguity function with the down-converted target transfer function.

3.1. The Cross-Ambiguity Function

In this section, the properties of the cross-ambiguity function are discussed.
The cross-ambiguity function of a radar is a rigorous mathematical description of a
radar’s response to an ideal point target moving at a constant range rate. The cross-
ambiguity function is therefore a two dimensional function of range delay T and
Doppler frequency f,. The cross-ambiguity function X, ,(tf5) of the signal x(z) with the

signal y(z) is defined as

x(7) y(t-7) ™' dt (3.1)

—ou8

1
0 (T 5o =

where T, is the duration of the signal x(1), T is the time delay between waveforms, and
Jfp is the Doppler frequency shift induced by the moving target. Equation (3.1)
describes the output of the radar receiver for various values of T and Doppler

frequency f,. Notice that Equation (3.1) is identical to the time average cross-

correlation function [4] except for the Fourier transform kernel &2,
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3.1.A. Physical Limitations on Resolution
It should be noted that the cross-ambiguity function is an accurate
representation of the radar response under certain restrictions on the signal duration 7,
and bandwidth B, in relation to the target’s velocity v and acceleration a. These

restrictions are derived in [1, p. 61] and are given by

BT,<0.1% (32)
v
and
BT;<02% (33)
a

where c is the speed of light in vacuum. ' Therefore, the analysis that follows is only
valid within the restrictions of Equations (3.2) and (3.3).

An example calculation will now be performed in order to become acquainted
with typical velocity and acceleration requirements for a given time-bandwidth
product. Consider a radar with a bandwidth of B, = 300 MHz and a processing time
T, of 100 psec. According to Equation (3.2), the maximum allowable velocity of a

target is

8
v<0.1 3x10 = 1000 m/sec (3.4)

(300 x 10°) ( 100 x 10°)

and the maximum allowable acceleration is
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3 x 10®
( 300 x 10°) ( 100 x 107 )

a<0.2 =20 x 10® m/sec? . (3.5)

The acceleration is unreasonably high for any realistic target and is not a limiting
factor, but the velocity limit is of interest. The radar signal described above would be
limited to processing reflections from targets moving at velocities of less than 1000
m/sec or 1943 kts. It should be noted that if the processing time is reduced, the
maximum target velocity will increase.

The velocity resolution of a pulsed radar is given by

>
<
1

37T (3.6)

d

where f, is the carrier frequency of the waveform. For f, = 2.0 GHz and T, = 100

psec, the velocity resolution is

8
Av = 3x 10 = 750 mjfsec (3.7)

220 x 10°) (100 x 10°9)

which is on the order of the maximum velocity. Therefore, the waveform above

cannot resolve the target velocity. Notice, however, that if f, is increased, then the
velocity resolution is increased.

The signal described above is well-suited for measuring range since the range

resolution of a signal is given by
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AR = (3.8)

again where B, is the bandwidth of the signal (for the signal bandwidth of above, the
range resolution is 1/2 meter). The product of the range resolution and Doppler

resolution is given by

2
ARAv = S . (3.9)
4 fo Ber

Therefore, for a fixed time-bandwidth product B,T, and carrier frequency f,, range
resolution must come at the expense of Doppler resolution and vice versa. Therefore,
a radar with high range resolution cannot also have high Doppler resolution.

Several important fundamental properties of the cross-ambiguity function are

now discussed.

3.1.B. Volume Distribution of the Cross-Ambiguity Function
It is of interest to determine the volume beneath the surface of the ambiguity

function. This volume is defined by

V= f |2(w fy ) |2 dv dfy (3.10)

.8

Following the method shown in [1, pp. 120-122], the volume can be shown to equal
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V = %.,00) %,,(0,0) (3.11)
where
.00 = 2 (|x0|* a (3.12)
Td o0

is the normalized energy in x(¢) and

1

™ |y |* at (3.13)

X,,(0.0) =

F—

is the normalized energy in y(z). Therefore, for fixed signal power, the volume
beneath the cross-ambiguity function is fixed. Suppressing the surface of the cross-
ambiguity function in one particular region results in an increase elsewhere on the
surface.

Two more properties of the cross-ambiguity function are related to the
distribution of the volume underneath the function. The first relates the delay-axis

function to the volume distribution in Doppler:

[1%6 1) P & = [ 260 1,60 e ™ ar . 619

The left side of Equation (3.14) is the integrated sidelobe level (ISL). Therefore, the
ISL is the Fourier transform of the product of the autocorrelation functions of the two

signals used in the signal processor. From the Wiener-Khinchin theorem, the
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integrated sidelobe level is equal to the convolution of the two signal power spectral

densities such that

ISL (f,) =SAf,) xS (f) . (3.15)
Therefore, the ISL of a radar signal processing scheme is dependent more upon the
power spectral densities of the signals used in the processor than the actual signal type
(e.g., linear frequency modulation versus pseudorandom modulation).
The second property relates the Doppler-axis function to the volume

distribution in delay:

flxn(r, fo‘) |? df, = fx;(O, £ ) 1,00, /) e gf, . (3.16)

Equation (3.16) shows that a signal with a narrow range mainlobe will have energy
spread over a broad region in Doppler (broad bandwidth), and likewise a signal with a
broad range mainlobe will have its Doppler energy concentrated in a narrow Doppler
mainlobe (narrow bandwidth). It should be noted that the majority of the volume

beneath the cross-ambiguity function of a pseudorandom signal is contained beneath

the pedestal region.

3.1.C. Linearity
The property of linearity is one of the most important properties in systems
analysis. This property makes it possible to easily analyze systems with multiple

inputs such as target return, clutter, and noise. The cross-ambiguity function of x(1)
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and y(z) is a linear operation on x(z) and y(z). This can be seen by setting y(1) = y,(?)
+ y,(t) which results in
1 I 2rfyt
v Sy ) = [ 30 Y0 P ar
o (2T il (3.17)

=% (T fy ) * (T Fp)

3.1.D. Linear System Effects
A particularly useful property of the cross-ambiguity function is the case for

which the signal y(z) has been convolved with a filter impulse response A(z)

|

7 x() ((t=7) *h(t)) e dr . (3.18)
d

X,y.h('fa fD ) =

ge—t

This property makes it possible to model distributed targets with a general impulse
response function /(t). This impulse response A(t) is referred to as the range profile of
the target since it describes how the target behaves in the time (range) domain.

Applying the convolution operation to Equation (3.18) yields

d ~» 200

Xyl T Sp ) = —;— fx(t) [ fy(t-t—u) h(u) du ] et g (3.19)

After switching the order of integration, the cross-ambiguity function becomes
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o« [}

_ 1 it 3.2
Ao Sp) = 2 | l x(0) y(t—tu) ™ dr | haydu  320)

d

which can be seen to equal

1
XyorlT fp ) = +

d

(2, (w40, £, ) ) h(w) du (3.21)

8

Therefore, the interaction between the radar and a target is described completely by

the cross-ambiguity function and the target impulse response.

3.1.E. Waveform Repetition
Waveform repetition is often used in radar systems to create a clutter-clear area
around the mainlobe of the cross-ambiguity function mainlobe along the Doppler-axis
[1, pp. 141-143]. Signal periodicity can be modeled as a convolution of a short-
duration repeated signal x(¢) with a periodic train of impulses. For an ideally periodic
train‘of impulses, there would be infinitely many impulses. But for a study of realistic

signals, a finite duration impulse train is used. A periodic signal can therefore be

written as

x(1) =x (1) * E 5(1-mT,) (3.22)

where T, is the period of the signal and M is the number of repetitions of the short-

term waveform. Equation (3.22) can also be written in terms of a periodic impulse

response function £,(2) as
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M0 =x,(0) <h (1) . (3.23)

Writing the cross-ambiguity function in terms of the periodic impulse response

function £,(1) yields

1 0 ® o ot

(T, f,) = — J‘ fxs(t—u) y(t-t-u,) e dt

Wlolo) =g | LU i (324)
h(u) hu,) du, du, .
After a change of variable of z=t-u,, Equation (3.24) becomes
1 0w © © g
YT Fp ) = f f J‘xs(Z) y(z-t—-(u,-u)) e dz

2P MT, ) ) 2 (3.25)

h(w) h(u) e du, du, .
where the identity MT, = T, has been used. By making the substitution of the cross-
ambiguity function of the short term waveform imbedded within the integral of
Equation (3.25) yields

1

Ao 1) = [ [, £

% (3.26)

—8

h(u) h(u,) €™ du, du, .

Performing the convolutions and making use of the sifting property of Dirac delta

functions yields the following summation
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1 M-1 N-1 i
0® o) = g o Ay T, ) 7T G

Using the substitution of / = m - n casts Equation (3.27) into the separable summation

A ) = -Z Loy, THT, ) z e

(3.28)

M-1+

Z Yy T, f ) Z e P,

M Im(M-1)

The summations over m can be written in closed form by using known properties of

geometric series

M-1 2nf MT
T err o 1 :’ (3.29)
1 o

mw0

and Euler’s identity. Therefore, Equation (3.28) can be written as

) =L T g e, 1)

M 1=-(M-1)

sin(tf M-|IDT) - jepaeain-r,
SGy 1)

(3.30)

Note that the / index locates the periodicities of the mainlobes of the cross-ambiguity

function of the short-term functions x,(¢) and y,(1).

3.1.F. Noise Contamination
The effect of additive stationary noise is now quantified. Since the cross-

ambiguity function is a linear transform, the noise can be dealt with separately from
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the desired receive signal. Therefore, the noise component of the received signal is

given by

1

= | x n@t-v) ™ dr (3.31)
Td

Al fp ) =

F—8

where n(t) is a stationary noise contaminant. Assuming that the noise contaminant is a
zero mean process, the expected value of the cross-ambiguity function between the

reference signal and the noise contaminant is zero:

[}

E{ X {t.fp)} = Tl fx(t) E{nt)}e™d=0 . (332)

d “=m

A more important measure of the effect of noise on the cross-ambiguity

function is the autocorrelation function of the noise contamination. This is given by

E { % fo ) LT ) } f *(0) x*(t")

é‘—ﬁ 8

(3.33)
E { n(t-t,) n*(t’-t,) } e 27 gt dr!
where n(2) is a stationary noise process. By making the substitution of t=z+?’ in

Equation (3.33), the following equation results
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x*(t’) x(t’ +z) dt’

f—

1 [¢]
E { Xxn(Tl’ fD ) xxn(TZ’ fD = F :£

(3.34)
R_(z~(1,-1) e’ dz
where R, (z) is the autocorrelation function of the noise contaminant. Noting the

autocorrelation function of x(z) in Equation (3.34) and making the substitution of

A=1,-1,, the autocorrelation function of the cross-ambiguity function equals

1

~ [RORSGW) PP az . 3
d

.8

E {Xxn(T, 5 ) %, (T+A, £, )} -

Therefore, the autocorrelation function of the noise takes the shape of the convolution
of the signal autocorrelation function with the autocorrelation function of the noise.
Equation (3.35) will be evaluated for two special cases that are of particular interest:
stationary white Gaussian noise and stationary narrowband noise. The white noise
process is typical of thermal noise which might occur in the radar receiver while the
narrowband noise is typical of an interference type signal such as an in-band emitter.

White noise is defined by an autocorrelation function R,,(z) = N,d(z) where N,
is the noise single sided power spectral density. Under the specific case of white

noise, the autocorrelation function of the noise contaminant is given by

E{ %l o) AT fp ) } = ; R_(A) e ™7 (3.36)

d

Therefore, the noise autocorrelation assumes the shape of the reference signal

autocorrelation function. Notice that Equation (3.36) is not a function of t. This




means that the noise variance is spread uniformly over the entire delay-frequency
plane. Notice also that the noise variance decreases as T, increases for a constant
mean square signal value R_(0). Therefore, for a constant envelope signal, the noise
variance is a function of the processing time and additive noise variance only.

The narrowband noise contaminant case is defined by R,,(z) = N, cos(2n f, z).

Narrowband noise manifests itself in the following manner

N j A
E{ den® S R, ) } = == (S.f, -£,) e
4 (3.37)

« S (fy + f,) ")

where

S(f,) = f R_(2) e dz (3.38)

is the power spectral density of the signal x(z). Notice that narrowband noise does
vary as a function of frequency. It causes a contamination that has the same spectral
shape as the signal power spectral density except for a simple modulation by the noise
contamination frequency. In the delay dimension, there is a phase shift only for
complex signals. For a real signal along the zero Doppler axis the shape of the noise
carrier wave is seen.

As an example of narrowband noise contamination, consider the case of
narrowband contaminant with N, = A? and with the signal power spectral density S,(f)

uniformly distributed in a bandwidth from -B/2 to B/2 and has a uniform amplitude
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of 1/B. This is shown'graphically in Figure 3.1. The interference variance at f,=0 is

equal to

2
A (3.39)
BT,

r

var { X, (T:0) } =

Therefore, FSK/PSK signaling spreads the narrowband signal over a bandwidth of B, ,

and the contamination level is improved by a factor of BT, .

3.2. General FSK/PSK Radar System Diagram

A generalized radar block diagram is shown in Figure 3.2. This system
implements the cross-ambiguity function of the transmit signal y(z) with a reference

signal x(¢). For an FSK/PSK radar, the transmit signal is defined by

N-1
0 =Y amH[t_?T)cos(2n(fm+fs)t) (3.40)

where a,, is either a I or -1, f,, is the baseband frequency of the m" sub-pulse, and f; is

the carrier frequency. The reference signal is defined by

N-1
X0 -% a,,II(

where a, is either a ] or -1, f, is the baseband frequency of the n sub-pulse, f, is the

t—;TJ g IR 0140 (3.41)

carrier frequency, f, is the Doppler correction frequency, and ¢, is the phase of the n*
sub-pulse.
In general, the transmit signal is delayed 7 seconds because of the propagation

through the atmosphere at the speed of light c. The signal is also convolved with the
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FSK/PSK Radar System Block Diagram.

FSK/PSK Radar System
f!
y(®)
£ y
x(t) h(t)
fc
fs + fc T
£+ 15
Integrate |« \>_</‘
f -f
D ¢
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range profile of the target h(z) and Doppler shifted by f; Hz because of the target
motion. With these considerations taken into account, the reflected signal at the input

of the receiver is given by

(3.42)

N-1
=Y a ]I (____t_m]?—T)

xcos (2 (f, +f, +f,) 1 =20 (f, +£,) T) ) * hd)

Referring back to Figure 3.2, it is seen that the output of the radar system is given by

x(t) r@) dt . (3.43)

F—3

1
T, = _
er( fD ) Td

Substituting Equations (3.41) and (3.42) into Equation (3.43) along with the principles

derived in Section 3.1 results in

[

0ol o) = [ (e fp = 1) e P07 ) heu) du (3.44)
where
N-1 N-1
Ao Lo =) =2 Y A& Sy = F) - (3.45)

The function within the summation represents the cross-ambiguity function of each of
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the frequency sub-pulses of the signal and is equal to

_ 1 ¥y t-mT-t t-nT
X fo = £ z—n“'"“"in ( T ]H [ TJ (3.46)

% eﬂf‘(fo‘fl*(f,.'ﬁ.))’ dt e-i(27tf,.“¢n)

Evaluating the integral of Equation (3.46) yields

aa
X (m-n+e) T, f, -f. )= ”I;In (1-lel)

(3.47)

x sinc {Tt(f S+, ) (L-le) T } g rn=eT o TG AT+ 9.
where the substitution of T = (m-n+€) T has been made and -1 < € < 1. For lel > 1,
Equation (3.47) is identically equal to zero. Making use of this representation of T,

and letting [ = (m-n), Equation (3.47) can be expressed as the following single index

summation
104 fy ~ ) =

N-1 N-1 20
E A& Sp =) * E Xnimi-n(1 & Sp = f) [20 (3.48)
m=l mwi+l € [0’ 1]

| N+i-1 N+i-2 <0
E xm(m-I)(s’ fD _fc )+ E xm(m-ul)(_l & fD "fc ) I<0

| ™ m=0 e:[-1,0]

Notice that Equations (3.46-3.48) are all considered to be baseband terms because they
are all dependent on the baseband frequency terms only. Equation (3.49) shows why
this is true. In Equation (3.49), the carrier term f; is factored out. Writing Equation

(3.49) in terms of the correlation integral shows that this separation of the carrier term
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results in the down-conversion of the target impulse response to baseband:
w fy =) = f (vt fy = £ ) (hw) e P ) du e P (349)

3.3. Conclusions

The volume beneath the surface of the cross-ambiguity function is constant for
constant power signals. Therefore, reductions in ambiguity function volume in one
region result in increases in other regions. This means that if the ISL for some
specific Doppler frequency is reduced, then the ISL will be increased for other
Doppler frequencies. Signal repetition causes the Doppler response of the repeated
signal to be multiplied by a weighting function that results in a sharper mainlobe in
Doppler at the expense of range ambiguities. In other words, the ISL is reduced in the
moving target region of the cross-ambiguity function, but the staﬁonary target ISL is
increased.

The response of a radar to an arbitrary target range profile is given by the
correlation of the baseband signal cross-ambiguity function with the down-converted
target range profile. Therefore, the response of the radar to a given target is
dependent not only on the target range profile, but also on the radar signal processor
itself. This means that the effective radar cross section of a target can be enhanced by
designing a signal processor that excites an maximum response.

Additive white noise becomes distributed uniformly over the entire delay and

frequency plane. The variance of the additive white noise decreases as the processing
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time increases. The processing time, however, can only be increased within the
confines of the limitation placed on the time-bandwidth product by maximum target
velocity. Narrowband noise contamination results in a modulated signal spectrum
contamination. Therefore, this contamination is a function of signal spectral shape. If
a narrowband contamination is introduced to the receiver signal processor, the signal
processor tends to spread the energy out over the entire bandwidth of the signal

(which is much larger than the contamination) thus reducing the effect of the noise.
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CHAPTER IV
PROBABILISTIC ANALYSIS OF THE

FSK/PSK CROSS-AMBIGUITY FUNCTION

In this chapter, the FSK/PSK cross-ambiguity function is analyzed
probabilistically as a random process. The function is analyzed for two different
regions; the mainlobe region and the sidelobe (or pedestal) region. The mainlobe
region is that portion of Equation (3.48) for which /=0 and /f] < 1/T,. The sidelobe
region is that portion of Equation (3.48) for which /#0 and/or /f/ > 1/T,. Probabilistic
analysis of these functions is required since the frequency and phase sequences within
a signal are inherently random. Therefore, the function is best quantified in general by
its mean (or expected value) and variance. The expected value of the cross-ambiguity
function describes the shape of the function on the average whereas the variance
describes how the realized function deviates from the expected value on the average.
It is assumed that the frequency and phase sequences are stationary random sequences.
The requirement of stationarity is necessary for the ahalysis that follows and is also a

valid assumption for signals that are random from signal-to-signal.
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4.1. Mainlobe Analysis

The mainlobe of the of the cross-ambiguity function of an FSK/PSK radar

signal is given by

N-1 N-1
%D =Y A& F) + D Hue(1-% ) 8(D)
m=0 m=1

4.1

N-2

+ Z Xm(m+1)(1+’t’ f) u(_T)
m=0

where u(z) is the unit step function and f=f,-f..
Taking the expectation of the sub-pulse cross-ambiguity functions with respect

to a,, and a, yields

Ea_a, {xmn(‘c’ f ) }

(1-leb

sinc{rfL-le)T } e 2T 7T g FWT "8 pp=p 4.2)

0 m*n

assuming equal likelihood of +1 or -1 for a,. From this knowledge, the expectation of

Equation (4.1) with respect to a,, and a, can be written as

N-1
E, %@ )} =Y Xunf) . (4.3)

Now, taking the expectation with respect to the sub-pulse frequencies f, and phases

¢,,, the expected function of the mainlobe is given by
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E ;o {%(& )} = %(1—Isl) sinc{nf(1-leT} e 7

4.4
- j j2nf eT+,)
E g J2rmT Ef,.lbm { o TOTLET S, }
m=0
which simplifies to
E (&, f)} = ! (1-lel) sinclnf(1-leT} e 7
aafo, { xxy g, f } = N €l) sinaTg £ e
(4.5)
: k-1
sll'l(TthT) o JN-UIT E p, e —H2nfeT+0)
sin(nfT) s

‘where K is the number of oscillators used to construct the signal, p, is the probability
that the k" oscillator f, is selected within the burst, and ¢, is the phase associated with
the k™ oscillator.

The mainlobe variance is now derived. The variance is important because it
describes the mean square error between any realization of an FSK/PSK cross-
ambiguity function mainlobe and the mean mainlobe function given in Equation (4.5).
The variance of the mainlobe of the cross-ambiguity function is found from the

following equation
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N-1

Y Al )

m=0

<

var{x,,& )} = E, ./,

L

N-1

Y X1 € S Jule) (4.6)

2
- | Eporo { A& )} *Eqapy

2
N-2

* Eﬂ.,a.f,.% mZ-O Aoy L€ [ ) u(-€)

Substituting in the individual functions into Equation (4.6) and collecting terms yields

the following

var %, (e f)} =

2
K-1
_]lv(l -lel)? sinc? {nf(l -leI)T} 1 - p, € —H2rfeT + 6

k=0

4.7
+ WD lel? Z Z P, P, sincz{n(f-(fk <) el T}
N? k0 =0 :

Notice that the variance is upper bounded by I//N. The longer the sequence, the lower
the variance. Therefore, as the sequence length increases, the realized cross-ambiguity

function converges to the expected function Equation (4.5).
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4.2. Sidelobe Analysis

The sidelobe region of the FSK/PSK radar signal cross-ambiguity function for

positive lag values is given by

N-1 N-1
Yl 8 ) =Y A ® )+ Y A& ) (4.8)
ms=] me=]+1

Using Equation (4.2), the expected value of Equation (4.8) is found to be equal to

zero. Therefore, the variance of Equation (4.8) is given by

N-1
var {2,046, £} = ¥ Eppro { | Xm® £ |2}
" 4.9)

N-1

+ E Ea"a,f.,.",. { I xm(m-l-l)(l_g’ f) |2 }

m=]+]

Equation (4.9) can also be expressed as

var{xxy(l+s, ) } =

K-1 K-1

N-1 2 1
(N—z) (1-le) ,§ ‘4_,? p;py sine” {m(f=(, )1 HeNT) (4.10)

K-1 K-1

+ (N;;l) lel? ; z-.; p.p, sinc? {“(f‘(fk-ﬁ))lslT}

Equation (4.10) was derived for the sidelobes characterized by values of />0. It is
however valid for both positive and negative values of /. Again notice that the

variance of the sidelobes decreases approximately as I/N.




56

4.3. Integrated Sidelobe Level Analysis
A more important result obtained from Equation (4.10) is the integrate sidelobe

level (ISL) given by

o

ISL(IfI<1/T)=fvar{xxy('c,|fl<1/T)}dt . (a1

-~

The ISL is important because it is related to the variance (power) of the ground clutter
return. Substituting Equation (4.10) into Equation (4.11) and evaluating the integral
yields the following equation describing the ISL in terms of the frequency selection

probabilities:

ISL (1fl<UT) =2 §f£+§_fi_’_’£_ . (4
o 3 i 2(n(i-k))?

Notice that the ISL is not a function of the sequence length. This results from the fact
that the randomized FSK/PSK waveform uniformly spreads its sidelobe energy in
range. As the sequence length increases, the variance of the sidelobes decreases
accordingly. The ISL remains constant however, since the domain of integration is
increased in a proportionally.

In Chapter III, the effect of periodicity (of period T,) on the cross-ambiguity
function was investigated. From the results of Equation (4.12) and (3.29), it can be

seen that the ISL of an FSK/PSK waveform that is repeated M times is given by

ISL,(1f 1« UT)=ISL (f)PER (f,M) (4.13)

where




-
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wi (g SN ARE
PER(f,M)=M1.i. E sm(ﬂ:f(M | )p) (4.14)

I=2(M-1) sin ( nf Tp )

assuming nonoverlapping waveforms. A plot of Equation (4.14) for M = 2, 4, 8, and
16 is shown in Figure 4.1. As is shown in Figure 4.1, the zero frequency term is
increased by approximately 10 dB/decade with increasing M while the nonzero

frequency terms are decreased approximately as 10 dB/decade with increasing M.

4.4. Conclusions

The mean value of the cross-ambiguity function is non-zero only in the
mainlobe. Additionally, the variance of the cross-ambiguity function is upper bounded
by 1/N at the mainlobe, and the variance falls off linearly with the distance from the
mainlobe to zero at its outer delay boundary. Even though the variance of the
sidelobes can be decreased by increasing the sequence length, the ISL of the cross-
ambiguity function is unaffected since the sidelobe energy is simply spread over a
larger area. Additionally, repetition of waveforms has the effect of increasing the zero
Doppler region ISL while the moving target portion is decreased. Therefore, a clear

area can be created by repeating waveforms.
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Periodicity Function vs Frequency
Number of Repetitions M = 2, 4, B, and 16
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Figure 4.1. Periodicity Function in dB Versus Frequency for Various Values of M.




CHAPTER V

MATCHED FSK/PSK SIGNAL TIME-BANDWIDTH PRODUCT

In Chapter II, it was seen certain factors that contribute to the LPI performance
of a radar signal processor: the time-bandwidth product of the transmit signal and the
effective radar cross section of the target. The higher the time-bandwidth product, the
better the LPI performance of the radar. In this chapter, the effective time-bandwidth
product of an FSK/PSK radar signal is derived. The time-bandwidth product is
determined by first calculating the effective bandwidth of the FSK/PSK transmit signal
power spectral density. The effective bandwidth of the signal power spectral density

is developed based on the signal’s noise equivalent bandwidth [1].

5.1. FSK/PSK Radar Signal Power Spectral Density

The power spectral density of a signal describes how the signal power is
distributed in the frequency domain on the average. The power spectral density of a

signal y(?) is defined by [1]

S (0) = E{lvo |} 5.1)

where E{} is the expected value operator, T, is the signal duration, and Y(w) is the

Fourier transform of y(z) defined by
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Y(w) = f W) e dr (5.2)

Mathematically, the power spectral density of a signal is equal to the limit of Equation‘
(5.1) as T, grows to infinity. For the purposes of this study, however, only finite-
duration signals are of interest. Therefore, Equation (5.1) will be termed the finite-
duration power spectral density of the transmit signal.

The transmit signal of the radar is defined by Equation (3.40). Evaluating

Equation (5.3) with Equation (3.40) as the argument of the integral yields

1 N-1 T |
Y((D) = __ Z an T sinc{ [(D - ( (Dn + Q)s ) ] il } e‘](m-(mnm)')) T2 |
2 n=0 2
(5.3)
N-1
AR (oo e

Taking the expected value with respect to the random FSK code and the random PSK

code of the magnitude squared of Equation (5.3) yields

NT? &

E{lY(m)|2}= 7 §pksinc2{[m—(mk+0)s)]

0|

} 5.4
NT? & L, T
+ p,sinc’llo + (o +o )| =~
4 g k [ ( k )] 2
where p,’s represent the probability of selecting oscillator k. Now, dividing through

by the duration NT of the signal yields the finite-duration power spectral density
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T — T
S”(w)=7f,§ pksincz{[m—(wk+ms)]7}
EKE sinc? [u)+(m +0))]1
4 = 2

Notice that the power spectral density of the signal takes the shape of the probability

(5.5)

density function of the frequency selection process. Mathematically, the term finite-
duration power spectral density is an oxymoron. By definition, power signals are
infinite in duration (persistent). In actuality, y(?) is an energy signal because only a
finite duration portion of the signal is processed in any processing interval. For the
purposes of this study, it will be assumed that the actual signal exists for infinity, but
only a fmite-duration portion of the signal is of interest. Therefore, Equation (5.5) is

valid for the analysis that follows.

5.2. Equivalent Bandwidth

Equation (5.5) can take on any arbitrary shape that has the properties of a valid
probability density function. Therefore, the bandwidth of the power spectral density is
a difficult parameter to define. The bandwidth could be defined to be (wy ;-w,) since
that is the maximum possible bandwidth in which the signal could possibly exist. A
definition of filter bandwidth that is often used in signal processing analysis is the
noise equivalent bandwidth of a signal. A pictorial representation of noise equivalent

bandwidth is shown in Figure 5.1 and mathematically by [1]

B, = do . (5.6)
Y max{S ()} f S, (@) do
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Equivalent Power Spectral Density

Actual Power Spectral Density

Y

. Frequency

Figure 5.1.  Equivalent Bandwidth of a Signal.

Equation (5.6) assumes that the oscillator frequencies are separated by at least 1/T Hz.
In other words, the different frequency sub-pulse power spectral densities do not
overlap. From Equation (5.5), the maximum value of the power spectral density

function is equal to one fourth of T times the maximum probability of frequency

occurrence

max{ S, (@) } = % max{ p, } . (5.7)

Additionally, the integral of Equation (5.6) is in a form that is tabulated in many

integral tables. The value of the integral can be found to equal
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e K-1
fSyy(m) do = X Y b= I (5.8)
e 2 k=0 2

Therefore, according to Equation (5.6), the equivalent bandwidth of an FSK/PSK radar

signal is given by

B = 1 , (5.9)
Y max{ P, }

Equation (5.9) can be evaluated for two extreme probability density functions in order
to become acquainted with the equivalent bandwidth. The first density function is a
uniform distribution in which all frequencies occur with probability 1/K. Under this

condition, the equivalent bandwidth is given by

(5.10)

The second density function that is of interest is one in which only a single frequency
is used. Under this density function, the equivalent bandwidth becomes

B =1 (5.11)
¢ T
Both of these equivalent bandwidth calculations have results that are intuitively

obvious.

5.3. Equivalent Time-Bandwidth Product

Since the duration of the FSK/PSK radar signal is equal to the number of
pulses time the duration of each pulse, the equivalent time-bandwidth product is equal

to
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BT, = N __ . (5.12)

max{ D, }
It should be noted that the equivalent time-bandwidth product should be used to
evaluate the LPI performance of the radar signal. It should not be used to determine
the maximum target velocity that can be processed by the radar. For the velocity
limitation, it should always be assumed that all frequencies will be utilized equally
often. In other words, for determining the maximum velo'city that the radar can

process, the following equation should be used

BT, =NK . (5.13)
It should also be noted that the maximum time-bandwidth product possible occurs for
a signal that uses all sub-pulse frequencies with equal likelihood. Therefore, as a
signal takes on any shape other than a uniform shape, the equivalent time-bandwidth
product, and the associated LPI performance is reduced. A measure of LPI
performance degradation due to a nonuniform transmit signal power spectral density
can be defined as the ratio of Equation (5.13) to (5.12)

Ber 1

Ly, = = 5.14
“ BT, Kmax{p,) G449

Notice that a value of L, less than unity represents an LPI performance degradation.
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5.4. Conclusions

The power spectral density of an FSK/PSK radar signal is defined by the
probability density function of the frequency selection random process. Since the
power spectral density can take on any shape that is a valid probability density
function, the bandwidth of the signal is somewhat difficult to parameterize. For the
purposes of LPI performance, the equivalent bandwidth of the radar signal is used.
This equivalent bandwidth of a signal is equal to the bandwidth of a signal with equal
power to the original signal that has an ideal bandlimited shape and a magnitude equal
to the peak value of the actual signal power spectral density. The equivalent
bandwidth is maximum for a signal that utilizes each available oscillator with equal
likelihood (uniform power spectral density). The equivalent bandwidth is bounded
between 1/T and K/T where K is the number of oscillators available and T is the

pulsewidth.

5.5. References

1. G. R. Cooper and C. D. McGillem, Probabilistic Methods of Signal and
System Analysis, Second Edition, Holt, Rinehart, and Winston, 1986.




CHAPTER VI

MATCHED FSK/PSK SIGNAL DESIGN

In this chapter, the probabilistic analysis of the FSK/PSK cross-ambiguity
function will be used to develop design techniques for Matched FSK/PSK radar
signals. Matched FSK/PSK radar signals are FSK/PSK signals in which the mainlobe
of the cross-ambiguity function has been specifically shaped to become a matched
filter for a given target range profile. The design technique will be derived from
Equation (4.5). First the special case of the FSK/PSK cross-ambiguity function
mainlobe at zero frequency will be analyzed. This will be shown to be of the form of
a discrete Fourier series. The discrete Fourier series representation will allow the
mainlobe of the FSK/PSK cross-ambiguity function to be designed to approximate the
shape of any arbitrary time-limited function. A step-by-step example involving

computer simulations will be used to illustrate the concept.

6.1. FSK/PSK Cross-Ambiguity Function as a Fourier Series

In this section, the mainlobe of the FSK/PSK cross-ambiguity function for the
case of zero frequency deviation will be analyzed to show that it is of the form of a
discrete Fourier series. From Equation (4.5), the expected value of the mainiobe of an

FSK/PSK radar signal cross-ambiguity function is given by

66




67

sinc{rf(1-lel)T} e 7%

E,, {%,6f)}= (_1%7_"_

. k-1 6.1)
sin(nNfT) e 0T Y p o TOHET )
sin(rifT) =0 ¢

again where K is the number of oscillators used to construct the signal, p, is the
probability that the K" oscillator of frequency f, is chosen within the signal burst, and
¢, is the phase of the k" oscillator. If the values of f; are chosen to be integer

multiples of the pulse rate

k
- 6.2
f = (6.2)

then the summation of Equation (6.1) is of the form of a discrete Fourier series (DFS).
It is of interest to express Equation (6.1) in a more convenient form of the product of

a closed form window function and a DFS,

K-1
E, {%&f)} =Werf) ; p, e 1o (6.3)
where
_ (-eh T . _ sin(mNfT) | jrv-1-207r 6.4
W, f) —— sinc{rf(1-le))T} Tl e . (6.4)

For values of f « 1/NT, Equation (6.4) is approximately equal to

W(E0) =(1-le)T . (6.5)

Therefore, the expected value of the cross-ambiguity function for f«0 is given by
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K-1
E, ., {%,(e0) } = We0) ; p, e 1 (6.6)

Equation (6.6) is clearly of the form of a discrete Fourier series with a triangular

windowing function W(0,e).

6.2 Properties of the Discrete Fourier Series

For the purposes of this study, the discrete Fourier series representation of the

function f{g) will be defined as

K-1
RO =Y b, e?® = f (o) (6.7)
k=0

where -1/2 < € < 1/2. Using the orthogonality property of the complex exponential,

the weights b, and phases ¢, are determined by the following

12
be % = f fle)er™de 638)
An

The DFS representation of a signal will now be demonstrated with an example.

For this example, define

fle) = .58(g) - .58(e~.25) (6.9)
where d(g) is the Dirac delta function. Assume that the function is to be approximated

with 8 complex exponentials (K=8). Now, the weights b, and the phases ¢, can be

determined from Equation (6.8) and are given by
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; sm(_“_k]l (6.10)
4

0, =(k—2 +u[sm{£€}Dn . (6.11)
4 4

Table 6.1 shows the values of f{e) and f,s(€) for 8 discrete values of €. Notice that

and

the actual signal is approximated exactly for the 8 match points shown. A plot of the
series evaluated at 128 values of & within the defined interval is shown in Figure 6.1.
As can be seen from Figure 6.1, the DFS functions approximate the original function
exactly at 8 match points. The DFS does not match the signal over the entire
interval. The reason that this occurs is that only 8 complex exponentials are being
used to represent a function that is actually represented by infinitely many sinusoids
because of its infinite bandwidth. In general, the DFS will match the original function
at K points equally spaced between -1/2 < & < 1/2 where K is the number of
frequencies summed together to form the estimate. A bandlimited function could,

however, be represented exactly.

6.3. Matched FSK/PSK Signal Design Example
In this Section, an FSK/PSK signal will be designed that will be matched to
function of Equation (6.9). The expected value of the cross-ambiguity function is
shown in Figure 6.2. Two things should be noticed from the Figure. First, the DFS
has been scaled. Second, the mainlobe of the expected value of the FSK/PSK cyclic

cross-correlation function has been windowed by the triangular windowing function.
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Values of the Function f{€) and f,zs(€) for 8 Equally Spaced Values of €.
3 fle) Jors(€)
-5 0 0
-0.375 0 0
-0.25 0 0
-0.125 0 0
0 0.5 0.5
0.125 0 0
0.25 -05 -0.5
0.375 0 0

Figure 6.1

Discrete Fourier Representation of 2 Impulses
8 Frequancies Usad in Appreximotion
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0.50 |

Toes(s)
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-0.50 -0.25 0.00 025 0.50

DFS Approximation to Equation (6.9).
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Triangular Window Effect on DFS
8 Fraquancies Used in Approodmation
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Figure 6.2.  Scaled DFS of Equation (6.9) and the Expected Value of the Mainlobe
of the Matched FSK/PSK Cross-Ambiguity Function.

The scaling results from the fact that the Fourier weights must sum to unity in order to
satisfy the constraints of a probability density function. Therefore, an FSK/PSK signal
that has an arbitrary cross-ambiguity function mainlobe can be constructed using the
DFS theory derived in the previous section. Two sources of error between the desired
result and the realized result are the effect of the triangular windowing function and
the variance of the realized main lobe. The windowing is a deterministic functional
error and the variance is a random noise-like error.

Figures 6.3.a and 6.3.b show a realization of the mainlobe of an N=64 pulse
K=8 frequency Matched FSK/PSK cross-ambiguity function designed to be matched to
the function of Equation (6.9). Figure 6.3.a shows the real component of the cyclic

cross-correlation function and Figure 6.3.b shows the imaginary component. Three
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N=64 / K=8 Matched FSK/PSK Cyclic Cross—Correlation
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Figure 6.3.a. Real Component of the Realized Matched FSK/PSK Cross-Ambiguity
Function and Standard Deviations for N=64 and K=8.
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Figure 6.3.b. Imaginary Component of the Realized Matched FSK/PSK Cross-
Ambiguity Function and Standard Deviations for N=64 and K=8.
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curves are shown in each figure: the realized function, the expected function plus the
standard deviation function, and the expected function minus the standard deviation
function. As can be seen from Figures 6.3.a-b, the realized functions stay within the
previously derived standard deviation function where the standard deviation is defined
as the square root of the variance. Therefore, Figures 6.3.a and 6.3.b verify the
expected value Equation (4.5) and the variance Equation (4.7).

The magnitude squared of the error between the expected Matched FSK/PSK
cross-ambiguity function and the actual realized Matched FSK/PSK cross-ambiguity
function of Figures 6.3.a-b is shown in Figure 6.4. As can be seen from Figure 6.4,
the realized error (or variance) loosely follows the mainlobe variance derived in the
previous chapter. Figure 6.5 shows the average realized variance of 300 random
Matched FSK/PSK cross-ambiguity functions each for N=64, 128, 256, and 512
pulses. As predicted by Equation ‘(4.7), the mainlobe variance decreases as 1/N.
Additionally, Equation (4.7) is verified since the shape of the variance curve is closely
tracked by the realized variance values. It should be reiterated that Figure 6.4 shows a
single realization of a random process (the error between the realized mainlobe and the
expected mainlobe) while Figure 6.5 shows an average of 300 realizations. The curve
of Figure 6.4 is not expected to follow exactly with the derived mean squared error

since it is only a single realization.

6.4. Conclusions

The mean value of the cross-ambiguity function mainlobe range response is of

the form of a discrete Fourier series. The weights of the discrete Fourier series are
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Figure 6.4. Squared Error of the Realized Matched FSK/PSK Cross-Ambiguity
Function Along with the Expected Error Function.
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Figure 6.5. Average Realized Squared Error Functions and Expected Error
Functions for N=64, 128, 256, and 512 Pulses.
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defined by the probability density function of the frequency selection process, and the
phases are given by the sub-pulse phases. Using known properties of the discrete
Fourier series, FSK/PSK signals can be designed to approximate any arbitrary
mainlobe cross-ambiguity function range response. This makes it possible to design
signals that excite a maximum response from any arbitrary radar target based on
knowledge of the target range profile h(z). Additionally, computer simulations verify
the results of Chapter III: the variance of the mainlobe response decreases with
increasing sequence length. The utility of this signaling scheme will be demonstrated

in the next chapter.




CHAPTER VI

COMPARATIVE ANALYSIS OF MATCHED FSK/PSK

In this chapter, matched FSK/PSK signaling is compared with two radar
signaling schemes: a baseline system that utilizes a uniform spectrum signal with a
receiver matched to the transmitted signal and a matched filter system that utilizes a
post processing filter matched to the target to filter the output of the baseline system.
The baseline system is referred to as a current technology system because its signal
processor is matched only to the transmit signal. The matched filter system is a future
technology system since it makes use of target-specific scattering information (the
range profile). The analysis begins with an analysis of the radar-target interaction
(effective radar cross section) of the baseline system, a white noise contamination
analysis of the baseline system, and a clutter contamination analysis of the baseline
system. Next, the effective target radar cross section, white noise contamination, and
ground clutter contamination of the matched filter radar is analyzed in a similar
fashion. The matched FSK/PSK radar system is analyzed for the same three
conditions above to develop equations for comparison with the other two methods. A
general mathematical comparison follows the analysis of the three radar technologies

which are quantified by performance ratios, or performance improvements. Finally,
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the performance improvements are characterized for six example target spectra

predicted by a radar cross section prediction code.

7.1. Analysis of the Baseline System

The baseline system transmits an FSK/PSK signal with a frequency probability
density function defined by

1
=_ (7.1)
Py X
where K is the number of frequencies used by the radar signal. Therefore, according

to Equation (6.6), the ambiguity function of the radar is approximately given by

K-1

1. 0) = % Y i (7.2)

k=0

Equation (7.2) has an impulse-like ambiguity range delay function. It is assumed that

the target has a range profile defined by

K-1
o) = Y (o, e (73)
k=0

where o, is the radar cross section of the target at the k* frequency, and the target
imparts a phase shift of ¢, on the k¥ frequency component of the signal. From the
correlation property of Equation (3.49), the maximum possible output of the radar for

a range delay value of =0 is given by
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max, | x(€ , 0) | = _}{ max_ (7.4)

K-1 )
E / o_k e J2rke+d,)
k=0

It should be noted that the squared value of the maximum output voltage is equivalent
to the effective radar cross section o of the target used in Equation (2.1).
The variance of an additive white noise contaminant is given by Equation

(3.36) to be

N
=_2° 7.5
R_(0) - (7.5)

d

where N, is the power spectral density of the channel noise and T, is the duration of
the signal. From Equation (4.12), the ISL of the signal with the frequency distribution
defined by Equation (7.1) is given approximately by

K-1 1
ISL=Y pl== . (7.6)
=0 K

Therefore, the output of the baseline radar has been defined for the effective radar
cross section (7.4), additive noise (7.5), and clutter contamination (7.6). The clutter
contamination, for the purposes of this comparative study, will be defined as the ratio
of the effective target radar cross section to the integrated sidelobe level. Or, as the

ratio of the square of Equation (7.4) to Equation (7.6)

S k1 .
Sb % max, E [ o, e Fonke+o) 7.7
| 0
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7.2. Matched Filtering

A matched filter implementation is now investigated. A matched filter
implementation involves a radar that utilizes the baseline signaling scheme with the
frequency probability density function defined by Equation (7.1). As in the previous
section, the output of the radar is given by Equation (7.4). The matched filter radar
system differs from the baseline systém in that it filters the range profile (measured by

the baseline radar) with a filter impulse response defined by

3 Vo et

h(e) =22 : (7.8)

K-1
Y
kw0

The denominator term of Equation (7.8) is a normalization factor to give the filter a

unity noise bandwidth [1]. From linear system theory, it is known that the output of
the matched filter for e=0 is equal to the convolution of the filter impulse response of

Equation (7.8) with the cross-ambiguity function of Equation (7.4)

K-1
Gk

2 (0,0)=—* | (7.9)

As above with Equation (7.4), the squared value of the output voltage is equal to the
effective target radar cross section of the target o. It should be noticed that Equation
(7.9) does not contain any phase terms. This results from the fact that the matched

filter is phase matched to the target, and therefore, realigns all of the phase variations
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in the target spectrum. In other words, all contributions to the target spectrum are
added in phase with one another (added constructively).

For the baseline radar, the autocorrelation function of the noise process at the
input of the matched filter is given by Equation (3.36) to be
NO

K-1
1 .
R = z: el (7.10)
m (€) T K ¢

dk-o

From stochastic processes theory [1], the autocorrelation function of the noise process

output from the matched filter defined by Equation (7.10) is given by

K-1
jarek
v Toe
R, () = — 22 : (7.11)
K T K-1

d E Gk
k=0

The mean squared noise output voltage (the noise power) output from the matched
filter is given by
R, (0) = _Kiv%; . (7.12)
Therefore, the noise variance of the baseline radar (7.5) is K times that of the matched
filtered case.
To determine the effect of the matched filter on the clutter return, it is assumed
that the clutter can be modeled as additive white noise. In other words, the

autocorrelation function of the clutter return can be modeled according to (7.11) as
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K-1

R, () =LY, L erm (7.13)
=

where the ISL is given in Equation (7.6). Following the white noise analysis

procedure from above, the actual effect of the clutter variance is equal to

RO =158 - 1 (7.14)
K K?
Therefore, the signal to clutter ratio for the matched filter case is
2 K-1
S KA 00) (7.15)

c R (0) P

7.3. Matched ESK/PSK Radar

The matched FSK/PSK radar is said to be matched to a target if the probability
density function of the frequency selection process has a shape that is proportional to
the magnitude of the target’s voltage reflection coefficients at each of the frequencies.

In equation form, the probability density function is given by

p = I

k K-1 )
> o
k=0

The numerator of Equation (7.16) describes the shape of the probability density

(7.16)

function and the denominator is a normalizing factor required of a valid probability
density function. The cross-ambiguity function for the matched FSK/PSK radar

waveform, as defined by Equation (6.6), is therefore equal to
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K-1
Xo(€.0) =Y p el ) (7.17)
k=0

where the p,’s are as defined above in Equation (7.16) and the phase terms ¢, are also
given in Equation (7.16). It is of interest to determine the value of the output signal
for zero delay. In other words, when the cross-ambiguity function is perfectly aligned
with the target range profile of Equation (7.3). Therefore, according to Equation

(3.49), the peak response for e=0 equals

K-1
0-Ic
1t (0,0)=_2 . (7.18)

K-1
Y o
k=0
As with the previous two radar examples, Equation (7.18) is the square root of the
effective target radar cross section of the target o.
It is now of interest to investigate white noise contamination of a matched

FSK/PSK radar. According to Equation (3.36), for the case of the matched FSK/PSK

radar, noise autocorrelation function equals

N K-1
R, (e) =2 E p, e (7.19)
Td k=0
where the p,’s are as given above in Equation (7.16), N, is the channel noise power

spectral density, and T, is the waveform duration. For the case of =0, the mean

noise output power is
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N
=2 7.20
R,, (0) - (7.20)

d

since the probabilities sum to unity. Notice that this is the same as for the baseline
case above (7.5).
From Equation (4.12), the ISL of a matched FSK/PSK radar is given

approximately by

K-1
Y o
ISL = k=0 - . (7.21)
K-1
Y o
k=0

Therefore, the signal to clutter ratio (as defined by the ratio of effective radar cross

section of the target to integrated sidelobe level) is given by

2 .
fy_=er(0,0)=Kzio_ ' (7.22)
C ISL =

Notice that the signal to clutter ratios of the matched FSK/PSK radar (7.22) and the

matched filter radar (7.15) are identical.

7.4. Comparison of Results
In this section, the results obtained in the previous three sections are compared.
The signaling schemes are compared in three categories: effective target radar cross
section (radar cross section enhancement), additive noise contamination level, and

signal to clutter ratio.
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A gain can be defined that is the ratio of the matched FSK/PSK effective target
radar cross section obtained from Equation (7.18) to the effective target radar cross
‘ section of the baseline radar from Equation (7.4). This ratio describes the target
enhancement obtained by utilizing matched FSK/PSK signaling. It should be noted
that this is a power gain and therefore franslates into a signal to noise ratio

improvement. The target enhancement of matched FSK/PSK is therefore given by

E, = B0 . (7.23)

K-1 K-1

H2nke+d)
Y o, | |max | o, e
k=0 k=0

It can be seen that Equation (7.23) is always greater than or equal to
K-1
K} o
k=0

K-1 :
> o
k=0

=E" . (7.24)

Notice that the enhancement is target dependent because the matched FSK/PSK radar
system utilizes target-specific information while the baseline system does not.

A gain can also be defined that is the ratio of the matched FSK/PSK effective
target radar cross section to the matched filter target radar cross section. This is given

by the squared ratio of Equation (7.18) to Equation (7.9) and is equal to
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K-1 ?
K o
E = j kZ.; * . (7.25)

S
S o,
k=0

There is considered to be a performance improvement due to matched FSK/PSK

signaling over a matched filter radar if

ch >% - \/—Uk_ . (7.26)

Using the triangle inequality, the left-hand side of Equation (7.26) represents the
hypotenuse while the right-hand side represents the average side length. Therefore,
Equation (7.26) is satisfied since the hypotenuse is always greater than the average
side length. Therefore, the effective radar cross section is always greater for the
Matched FSK/PSK radar than for the matched filtered radar.

Target enhancements for two example target radar cross section distributions
can now be calculated: a uniform spectral distribution and an impulsive spectral

distribution. For the uniform distribution, ¢, = ¢ and ¢, = 0 for all £ from O to K-1

“where K is the number of frequencies in the signal. For this specific case, the

matched FSK/PSK target enhancement to baseline radar target enhancement is given

by
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E =1 : (7.27)

The enhancement of the two radar targets is identical since the target spectrum is
identical to the baseline radar transmit signal spectrum. In other word, the baseline
radar is matched to the uniform spectrum target. Likewise, the enhancement of

matched FSK/PSK radar over matched filter radar is

E =K . (7.28)

The matched filter radar suffers a loss in target enhancement for the impulsive target
even though the transmit signal is matched to the target. This is a result of the unity
noise bandwidth of the filter. In other words, the filter tends to attenuate the target
return, but as will be seen later, the noise is attenuated by the same amount. For the
impulsive target distribution the target spéctrum equals o,, = ¢ for some integer m and
is zero otherwise. For this impulsive spectral distribution, the matched FSK/PSK

target enhancement over the baseline radar is equal to

E =K? ) (7.29)

b
The target enhancement for this spectral distribution is quite large. The reason for this
improvement is that the baseline signal only has one frequency component reflected
whereas the matched FSK/PSK signal only transmits in the frequency band reflected
by the target. The target enhancement of matched FSK/PSK over matched filtering is

given by
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E =K? . (7.30)

Therefore, the target enhancement is dependent upon the distribution of the target
radar cross section in frequency. The target enhancement is greater for the impulsive
spectral distribution (uniform in range) than for the uniform spectral (impulsive in
range) radar cross section distribution. This is a result of the effective utilization of
the transmitter power for the matched FSK/PSK radar.

From the noise analysis of the previous sections, the improvement in signal to
noise ratio of the matched FSK/PSK radar SNR,, over the baseline radar SNR, is
simply given by Equation (7.23) since the noise contamination levels are the same for
each of the two systems. From Equations (7.12), (7.20), and (7.25), the improvement
in signal to noise ratio of the matched FSK/PSK radar system SNR,, over that of the

matched filter radar SNR,, is given by

K-1 2
K o
SNR, E, _ \lkz_.; |1 pma (7.31)
- - b .

SNR, K KL X
Y o

For the two example distributions from above, the signal to noise ratio improvements

are

MY =EFE =1 (7.32)

and
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SNRy _En K _ (7.33)
SNR K K
for the uniform spectral distribution, and
SRy _p g 30
SNR

and

SNR, _E, K2

__Y=-_r =K (7.35)
SNR K K
for the impulsive spectral distribution. This is intuitively pleasing since the uniform
spectral distribution matches the signal transmitted of the baseline implementation (in
other words, the target-specific information is the same for all targets). Therefore, no
performance improvement should be expected. The performance improvement
associated with the impulsive spectral distribution is also logical since the radar would
be transmitting only in the spectral region in which the target reflects.

The signal to clutter performance of the matched FSK/PSK system (7.22) is
identical to that of the matched filter system (7.15). It should be remembered that the
matched filtering implementation has an additional layer of signal processing over the
matched FSK/PSK radar and hence is more complex in the receiver whereas matched
FSK/PSK is more complex in the transmitter. The matched FSK/PSK radar system
requires that the signal be transmitted and processed through the correlation processor.

The matched filter implementation requires that the output of the correlator be

matched filtered to enhance the target.
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The ratio of the matched FSK/PSK signal to clutter ratio to the baseline signal

to clutter ratio is equal to

S /C | K E O,
- = = >E, . (7.36)
Sb / C 2 min

K-1

j(2rtk
Z [O.k eJ( £+9,)
k=0

From Equations (7.27) and (7.29), it is known that Equation (7.36) varies between one

max,

for the uniform spectral distribution and K for the impulsive spectral distribution.
Therefore, either matched FSK/PSK signaling or matched filtering provide a gain over

the baseline radar in all environments due to the use of target-specific information.

7.5. Example Performance Gains for Predicted Target Signatures

The calculations in the previous examples are for some extreme theoretical
distributions. It is of interest to calculate the performance improvements for some
predicted signatures of actual aircraft models. Table 7.1 shows the performance
improvements in dB for six different aircraft targets. The target spectra (o,’s and ¢,’s)
are predicted for the models using Xpatchl [2] which is an optical region
electromagnetic signature prediction code. The signatures are taken over an azimuthal
sweep from 5° to 15° off nose-on in 10 equally spaced steps and in elevation from -5°
to 5° above the waterline in 10 equally spaced steps. There are a total of 100
signatures for each target. Each signature is predicted within a bandwidth from 2.0 to

2.3 GHz (1/2 meter range resolution), and there are 64 frequencies in each signature.
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In Table 7.1, the first column represents the mean value of the improvement in
signal to additive noise power of a matched FSK/PSK radar over a baseline radar in

dB. This is calculated by the following equation

E, =10 log, ( E { E, } | (7.37)
where E{} is the ensemble average over all azimuth and elevation values, and E,, is
calculated from Equation (7.23) for each azimuth and elevation value.

Column two represents similar values of improvement in signal to noise ratio
for the matched FSK/PSK radar over the matched filter radar. The equation evaluated

in column two is given by

- E (7.38)
E =101log, | E _Kﬂ

where E,*/K is calculated using Equation (7.31).
Column three represents the improvement in the signal to clutter ratio by using

matched FSK/PSK or matched filtering over the baseline radar system. Column three

is calculated using the following equation:

Su!C (7.41)
S,/C ||

SIC = 10log,, | E

where the ratio in the argument of the logarithm is calculated using Equation (7.36).




Table 7.1.

Target # E, E, SIC L, p
1 6.2 0.9 53 -3.1

2 4.2 0.8 33 -2.7

3 3.0 0.5 24 2.1

4 5.6 0.9 47 -32

5 3.6 0.8 2.8 -2.7

6 3.6 0.7 2.8 -2.5
Units dB dB dB dB

Column four of Table 7.1 shows the expected LPI performance losses due to
the reduction in effective bandwidth that results for utilizing matched FSK/PSK

signaling. This loss is calculated using Equation (5.19) and is given by

The data in Table 7.1 show that the performance improvement achieved by

making use of target-specific information is significant. For the matched FSK/PSK

Loy = 10 logl0 ( E { Ly} )
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Realized Performance Improvements and Losses for Matched FSK/PSK
and Matched Filtering.

(5.40)

signal to noise ratio data (column one), the mean improvement over the baseline radar

is in a range of between 3 dB and 6 dB. In other words, the average signal to noise

ratio is doubled or even quadrupled depending on the target. For clutter limited

environments, the mean signal to clutter ratios (column three) are improved by a factor

of between 2.4 dB and 5.3 dB. This improvement is not quite as large as those seen

for the additive noise environments, but they are still significant improvements. The
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data in column two show that the mean improvement realized by utilizing matched
FSK/PSK instead of matched filtering is minimal. They range from a 0.5 dB
improvement to 0.9 dB. Column four shows the LPI performance loss due to the
reduction in effective bandwidth due to matched FSK/PSK. It appears that typical
losses are in a range of 2 dB to 3 dB. Therefore, the overall LPI performance
improvement achieved by utilizing matched FSK/PSK radar over the baseline radar is
in a range of between 1 dB and 3 dB on the average.

Figures 7.2 and 7.2 give some insight into the enhancement and loss values
encountered in Table 7.1. Figure 7.1 shows a typical range profile and spectrum for
Target 1 while Figure 7.2 shows a typical range profile and spectrum for Target 3.
From Table 7.1, Target 1 is seen to have the highest enhancement and signal to clutter
improvement of all targets. Conversely, Target 3 has the worst enhancement and
signal to clutter improvement. The reason for these results can be seen by comparing
Figure 7;1 with Figure 7.2. The range profile of Target 1 is more distributed in range
(spectrum is more concentrated in frequency) than the profile of Target 3. This means
that greater target enhancement should occur for Target 1 since its spectrum is less
uniform in frequency (more distributed in range). Additionally, it should be noted that
the spectra of both targets are broadbanded and uniform. This is the reason the
enhancements and signal to clutter ratio improvements are closer to unity than K.

This spectral uniformity is a characteristic of optical region target scattering (impulsive
in range, broadband in frequency) and therefore, large gains (> 10 dB) should not be

expected for optical region targets.




Figure 7.1.

Figure 7.2.
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7.6. Conclusions

Matched FSK/PSK radar and the matched filter radar both yield performance
that is superior to the baseline radar based on an analysis of the signal to noise ratio
and the signal to clutter ratio. The performance increase is dependent upon the target
spectral content since the matched FSK/PSK radar and the matched filter radar both
make use of target-specific information. The theoretical matched FSK/PSK signal to
noise ratio is between 1 and K’ times that of the baseline radar. Additionally, the
matched FSK/PSK signal to clutter ratio is theoretically between 1 and K times that of
the baseline radar depending on the spectrum of the target. Therefore, a significant
performance increase can potentially be obtained by utilizing target-specific
information in the design of a radar signal.

Based on the calculations in Section 7.5, expected values of signal to noise
ratio improvement for actual optical region targets are typically between 3 dB and 6
dB. Additionally, the use of target-specific information results in typical signal to
clutter improvements of between 2 dB and 5 dB. Even though these improvements
are significant, they are much less than the theoretically possible improvements. This
is a result of the basically uniform spectral signature of optical region radar targets.
The épectral signatures have a uniform broadband shape because of the impulse-like
temporal characteristic of optical region radar targets.

In an additive white noise environment, matched FSK/PSK radar outperforms
both the baseline system and the matched filter system. This performance increase

results from an efficient use of transmitter power. The matched FSK/PSK radar
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transmits power only in regions that scatter efficiently. In other words, a radar that
transmits an impulse-like signal wastes power in spectral regions that do not reflect
transmitter power. The overall performance gain is dependent upon the target
reflection characteristics, and the gain is bounded between 1 and K where K is the
number of frequencies.

The results of calculations based on predicted target signatures show that the
realized matched FSK/PSK signal to noise ratio improvement relative to the matched
filter radar is typically less than 1 dB. Therefore, it seems that matched FSK/PSK
performance is not significantly better than matched filtering for a actual optical region
target. Additionally, with the matched filter implementation, there is no LPI
performance degradation due to a transmit bandwidth reduction.

In a ground clutter limited environment, matched FSK/PSK radar performance
is identical to matched filtering radar. This results from the fact that the ISL of the
matched FSK/PSK radar signal increases identically with the target enhancement of
matched FSK/PSK over matched filtering. It should be noted, that matched FSK/PSK
requires one less layer of receiver signal processing than matched filtering because the
matched FSK/PSK signaling scheme has the additional layer of signal processing built
in,to the waveform. This post processing could be a limiting factor if a large range
search (large number of range bins) is required because of the computational overhead
of performing the discrete convolutions. According to [3], an N, point convolution (N,

is the number of output range bins) requires approximately
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3N_ log, N, (7.43)

complex floating point operations when an efficient FFT-based convolution routine is
used. For example, a 1024 point output result requires approximately 31,000 complex
floating point operations. This translates into 775 psec of processing time for a 40
Mflop processor. It should be remembered that the 775 usec is required for the
convolution alone. This does not include any other computer tasking that might be
required such as Doppler processing.

With regard to the overall LPI performance, the matched FSK/PSK radar trades
2 dB to 3 dB in LPI performance in order to obtain an additional 3 dB to 6 dB in
signal to noise ratio performance. This is a positive overall LPI improvement of
between 1 dB and 2 dB over the baseline radar. The reason that this loss occurs is
that the matched FSK/PSK radar must reduce its equivalent transmitter bandwidth to
transmit only in highly reflective regions. Therefore, the equivalent time-bandwidth
product is reduced.

It should be reiterated that both the matched FSK/PSK radar and the matched
filter radar perform better than the baseline radar in both white noise environments and
| ground clutter limited environments. This performance improvement is a result of
target enhancement. This target enhancement requires knowledge about the target’s
scattering characteristics. Since this knowledge is typically not known a priori, a
technique for determining the target spectral characteristics must be developed. This

is the focus of the remainder of this study.
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CHAPTER VIII
GRADIENT DESCENT METHOD FOR DESIGNING

OPTIMUM RADAR SIGNALS

In previous chapters, the pulse compression radar processing technique
designated matched FSK/PSK was analyzed. This processing technique makes it
possible to design signals with compressed main lobes of arbitrary pre-designed
shapes. Since the response of a radar to a given target is given by the correlation of
the compressed main lobe with the target range profile (for a high range resolution
radar signal), it is possible to design a signal that will excite an optimum response
from a target. A problem arises with this method because the design of a signal to
excite the optimum response requires a priori knowledge of the target. Typically, the
range profile will not be known a priori and therefore, it is desirable to have a method
for iteratively designing the optimum signal based on previous radar returns in real
time. This chapter focuses on a method that is derived based on the technique of
gradient descent.

First, a brief outline of the required background information is given so that the
problem can be properly formulated. Next, the optimum signal is derived for a
randomly varying target range profile. An iterative solution to the analytic problem is

then derived that is based on gradient descent [1]. Algorithm implementation within

98
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the framework of a radar is discussed next. Finally, the results of computer
simulations are used to illustrate the effectiveness of the algorithm on high range
resolution radar targets in various environments: additive white noise, correlated and
uncorrelated random range variation, and correlated and uncorrelated random angle
variation. Conclusions about the usefulness of the algorithm as a target learning, or

measurement technique are discussed.

8.1. Backeround

A block diagram of a high range resolution radar system utilizing a cross-
correlation receiver is shown in Figure 3.1. The response of a high range resolution

radar range profile A(z) to a radar utilizing a cross-correlation receiver is defined by

Yo (6 f) = fxxy(r +u, f) h(u) du @.1)

where the cross-ambiguity function (1) is given by Equation (6.6).
An optimum radar, or matched radar is defined as a radar that utilizes a cross-

ambiguity that maximizes

%0, 0P = | | %y( 10) %5(»0) hQu)h*(v)dudv . (8.2)

f—8
—. 8

It is useful to cast the equation above into a vector representation. The vector

representation of the cross-ambiguity function is
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X=Xy (o) Ay (1) e o y) | (83)
where the subscripts designate the various sample points and T designates the vector

transposed. Likewise, for the target range profile is given by

ho=[h(ug) h(uy) s By )] (84)

Equation (8.2) becomes

X(0.0)[" =Bty ®.3)
where the superscript H designates the complex conjugate transpose. Therefore, it is
desired to maximize Equation (8.5) with respect to %. For generality, it is assumed

that the vector h is a random process described by a correlation matrix C defined by

c=Efnh"} (8.6)

where E represents the ensemble average operator. Therefore, Equation (8.5) becomes

|%(0,0)* =y Cx 8.7

where C is the target correlation matrix.

8.2. Analvtic Approach to Optimization

Equation (8.7) must now be maximized. It is of interest to maximize the
squared voltage value (as opposed to the signal-to-noise ratio) since the white noise
contamination of a pulse compression waveform depends only on the processing
interval and not the compresséd main lobe shape. The typical approach to maximizing

a functional is to take the derivative with respect to the control function, and then
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solve for the value of the control function for which the derivative is zero. It is also
required that the energy of the cross-ambiguity function be constrained to some

constant value . This is a constrained extremization problem, therefore a Lagrange
multiplier must be used. Using the Lagrange multiplier, the following equation must

be maximized

Lo () =27 Cx + A (a7 %) 8.8)
where A is known as the Lagrange multiplier. The optimum solution to Equation (8.8)

is obtained by solving

0%, (x)

=2Cx-2A%x=0 . (8.9)
9%

Therefore, the optimum vector %, is obtained from the following

Com =M Ko - (8.10)

Equation (8.10) is simply a statement of the well-known eigenvalue problem where
xop; is an eigenvector of C and A is its associated eigenvalue. It can be shown that the
optimum solution of Equation (8.10) occurs when %, is the eigenvector of C
associated with the principal eigenvalue A of C. %, is also known as the principal
component of the correlation matrix C. The principal component can be thought of as
pointing in the direction of the maximum variation of the random process h [2].

Equation (8.10) suggests how to design a signal based on a target correlation
matrix. This correlation matrix is typically not known a priori. Therefore, an iterative

solution must be obtained that will iteratively approximate the optimum solution.
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8.3. Gradient Descent Iterative Solution

An iterative method for maximizing Equation (8.8) is described in this section.
First an initial guess of 7, is assumed. Also, it is assumed that all subsequent
estimates of the optimum solution will be better than the previous estimate. In

equation form, the previous assumption yields

ixr(xo) < %xr ( xo + AX ) * (811)
Expanding ~er about %, as a Taylor series and retaining only the linear term yields the
following linearized equation
a %xr

ix,(xo+Ax)=i,,(xo)+Axa_x_ , (8.12)

Substituting Equation (8.12) into Equation (8.11) gives the following inequality

~

3
T (%o ) S % (%o ) + BX a’;' . (8.13)

Equation (8.13) is always satisfied if the increment Ay is given by

~

py =p 2 (8.14)
dx

where y is the learning rate. Therefore,

Xon =1, +n 3K (8.15)
0%

where the subscript designates the iteration index. Using the partial derivative of the

functional from the previous section, Equation (8.15) becomes
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Xk*1=xk+2prk . (8.16)

Another crucial component of the iterative solution involves normalizing ¥, after

each step with the following energy normalizing equation

X
Xpsr = it : (8.17)

VX;CJ*'I Xk+1

This normalization process is required since the optimization problem is a constrained

optimization.

It is important to note that the algorithm defined by Equations (8.16) and (8.17)
is known as plain Hebbian Learning [2] in the field of Neural Sciences. The learning
technique can be thought of as a reinforced learning technique in that it tends to
converge to the vector that points in the direction of maximum variation (variance). It
will also point in the direction of the vector input that is introduced to the algorithm
most often. The learning machine paradigm of the iterative design algorithm yields

significant intuitive insight into the operation of the algorithm.

8.4. Implementation Issues

Equation (8.16) provides a method for designing the optimum radar cross-
ambiguity function. The technique requires the target correlation matrix C to be
measured. Therefore, a technique for measuring C must be determined. From

Equation (8.6),
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and

Cy=Efhni}y . (8.19)

Now, define
(8.20)

where c is a scalar that is a measure of the cross-correlation between h and y. The
radar can measure ¢ by transmitting the complex conjugate of y and conjugating the
received voltage for zero delay. h can be measured if the radar transmits a signal with
an impulse-like cross-ambiguity function. Therefore, a plausible implementation of the
gradient descent algorithm derived in the previous section would be the following:

1) Transmit the complex conjugate of ¥, and receive c,

2) Transmit an impulse like waveform and receive h, and

3) Form the next estimate of the optimum waveform from

Xeo1 =X +20Ch . 8.21)

The algorithm above requires that the optimum waveform be transmitted only
half of the time. The other half of the time, an impulse-like sub-optimum signal must
be transmitted. This is required only during the waveform design procedure. In other

words, the radar would operate in a design mode until the signal is designed (i.e., K
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iterations). After the K™ iteration, the radar would operate using only the designed

optimum waveform. This aspect is illustrated in the following computer simulations.

8.5. Computer Simulation of the Gradient Descent Method

In this section, the gradient descent signal design technique derived in the
previous sections is illustrated using computer simulations. These simulations will
model the effects of additive white noise, correlated and uncorrelated random range
motion, and correlated and uncorrelated random angular motion. A listing of the
Matlab® [3] script used in the study can be found in Appendix A.

The target range profile used in the simulations is that of an aircraft-like target
generated by Xpatchl [4]. The range profiles consist of 64 data points and they are
valid within the bandwidth of 2.0 to 2.3 GHz. Therefore, they have a .5 meter
resolution. The angular variation is between 5° and 15° in azimuth at 10° below the
waterline in elevation. These angular locations were chosen since they are typical of a
closing target. Additionally, it was found that the incident angle, at least on a broad
scale, had little to do with the performance of the algorithm.

. The performance metric is the squared error between the estimated range
profile (optimum signal) and the actual range profile

el =(x -h)¥ (% -h)
(8.22)

=2(1"‘kah|)

where
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W h (8.23)

is the cross-correlation between the estimated profile and the actual range profile. It

has been assumed that

xS, = k"R =1 . (8.24)
The actual squared error value in Equation (8.22) would replace the magnitude
operator with an operator that would include the real part only. The magnitude
operator is used for this case since the phase error is not of interest, only the shape.
Also notice that the iterative algorithm maximizes the component of Equation (8.23)
and therefore Equation (8.22) is minimized. Therefore, the gradient descent algorithm
minimizes the squared error between the optimum signal and the actual target range
profile. This means that the gradient descent technique is optimal for target

measurement as well as target excitation.

8.5.A. Additive White Noise Effects
Figure 8.1 shows the effect of the learning rate on the removal of additive
white Gaussian noise. This plot shows the mean square error versus the number of
iterations for three values of learning rate: x=0.2, 0.1, and 0.05. The average of 100
independent trials is shown for each value of the learning parameter u. The signal to

noise ratio of each measurement is unity where the signal to noise ratio is defined by
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Additive White Noise Effects
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Figure 8.1. Mean Squared Error Versus the Number of Iterations for Three
Different Learning Rates.

SNR = ! (8.25)
ntn

where n is the vector of 64 independent Gaussian random variables. From the plot it
can be seen that the gradient descent technique converges to its minimum value after
1/u iterations, and the mean square error converges to approximately a value of u.
Figure 8.2 shows the effect of additive noise for a fixed learning rate. The plot shows
the mean square error for three different signal to noise ratios: SNR = 6 dB, 0 dB, and
-6 dB. The learning rate is a constant value of z = 0.1. An average of 100
independent trials is shown for each curve. It can be seen from the Figure that the

mean square error of the estimate improves at 10 dB/decade with signal to noise ratio.
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Additive White Noise Effects
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Figure 8.2. Mean Squared Error Versus the Number of Iterations for Three
Additive White Noise Variances.

Additionally, the learning time (convergence time) is not appreciably affected by the

noise contamination level.

8.5.B. Random Range Motion Effects
The effects of correlated random range motion on the squared error are shown
in Figure 8.3. Correlated range errors are of interest because they model the errors
that might occur with a range tracking control loop. The range errors will be
correlated because the radar has a finite servo bandwidth. The simulated range errors
are modeled by a Gaussian noise vector that has been low pass filtered with a second
order Butterworth filter [5]. In the test, the learning rate is fixed at a value of u = 0.1.

For this series of tests, the variance of the range errors is fixed at 0.1 squared range




109

Range Motion Effects
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Figure 8.3. Mean Squared Error Versus the Number of Iterations for Various
Range Tracker Servo Bandwidths and Fixed Range Tracker Error
Variance.

resolution cells. The plot shows the mean square error for three values of bandwidth:
B = 0.01, 0.0316, 0.1 (5 dB increments), and 1.0 (uncorrelated). It should be noted
that the decorrelation times for each of the bandwidths are 100, 32, 10, and 1
iterations, respectively. Additionally, since the gradient descent technique converges
within approximately 10 iterations, the technique converges before the range errors
decorrelate for the two lower bandwidth simulations (B = 0.01 and B = 0.0316). From
the curves in Figure 8.3, the mean square error appears to increase as 20 dB/decade
with servo bandwidth for the two lower bandwidth cases. This means that the
éccuracy of the range profile estimates is dependent upon the bandwidth of the random

motion. Additionally, the 20 dB/decade change suggests that the error is strongly
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related to iteration-to-iteration variation of the motion (the time derivative of the range
motion error).

Figure 8.4 shows the effect of varying the variance of the range tracker error
while holding the servo bandwidth of the tracker constant. For this test, the
normalized bandwidth is held at a constant value of B = 0.0316. The variance of the
range tracking error is set to values of 0.0316, 0.1, and 0.316 (5 dB increments).
From the plot, it can be seen that the mean square error of the range profile estimate
increases as 10 dB/decade with increasing range tracker error variance. Since the
range profile estimation error increases 20 dB/decade with servo bandwidth and 10
dB/decade with range tracker error variance, it is reasonable to assume that the mean
square error of the range profile estimate is dependent upon the derivative of the range
tracker error signal and not the range tracking error itself.

The effect of the learning rate on the mean square range profile error in a
range motion environment is shown in Figure 8.5. As is shown in Figure 8.5, as long
as the learning parameter is greater than the bandwidth, the mean square error
decreases with increasing learning rate. In other words, the learning rate should be set
so that the gradient descent technique converges faster than fhe range tracker errors
decorrelate. Additionally, it appears that the mean square rahgé' proﬁle' error decreases

as 20 dB/decade with increasing learning rate.

8.5.C. Random Angle Motion Effects
In this section, the effect of angular scintillation on the gradient descent

method is investigated. From Chapter II, angular motion has two effects on the range
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profile: a phase modulation effect and an envelope effect. From Equation (2.21), the
phase modulation varies significantly for a 15 meter length target at approximately 2
GHz if the angle varies by more than 0.14°. Additionally, from Equation (2.22) with
AR = 0.5 meters, the range envelope varies significantly if the angle varies by any
more than 1.92°. As in the previous section, angle motion is modeled by a second
order Butterworth low pass filtered Gaussian random process. The variance of the
process is held constant to 0.1 squared degrees (standard deviation of 0.316°). The
curves of Figure 8.6 represent averages of 100 independent simulations with the
bandwidth B = 0.01, 0.0316, 0.1 (5 dB steps), and 1.0 (uncorrelated). The range
profiles are generated by Xpatchl at 5° below waterline in elevation and from 5° to
15° in azimuth sampled every 0.1° to satisfy Equation (2.23). The range profiles for
azimuth angles between the calculated points are determined by linear interpolation of
the calculated points.

Figure 8.6 shows that the mean square error of the range profile estimation
increases approximately as 20 dB/decade with the bandwidth of the angle motion
wheﬁ the range errors do not decorrelate within a learning period of approximately 10
iterations. This is similar to the phenomenon seen in Figure 8.4 for the range tracking
errors. Therefore, as with the range tracking errors, it appears that the rate of change
in‘the target incident angle is the most important factor in range profile estimation.

Figure 8.7 shows that the mean square error of the range profile estimation
increases as 10 dB/decade with the variance of the angle motion (assuming fixed

bandwidth). This trend, along with those of Figure 8.6, suggests that the rate of
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change of the target incident angle is more important that the variance of the process.
Again, this is identical to the error sources associated with range tracking errors.
Figure 8.8 shows the effect of changing the learning rate while maintaining a
fixed motion bandwidth of B=0.0316 and an angular motion variance of 0.1 squared
degrees. As above with the range errors, the higher the learning rate, the lower the
mean square range profile error. This also suggests that the source of error is in the

rate of change of the range profile due to angular motion.

Angle Motion Effects
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Figure 8.8. Mean Square Error Versus the Number of Iterations for Three Values of
Learning Rate and Fixed Motion Variance.

8.6. Conclusions

In this chapter, an iterative signal design technique was derived and simulated.

The derivation was based on the well known method of gradient descent. The
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computer simulations were used to develop an understanding of the performance of the
algorithm in order to determine a possible design philosophy for the technique.

From the simulations it was seen that there are basically two types of errors
that are associated with the iterative technique: additive noise errors and target profile
fluctuation errors. The additive noise errors are representative of additive white noise,
jamming, and ground clutter contamination. The target profile fluctuation errors result
from the fact that the target range profile is itself a random process. The target is a
random process since the range to the target and the aspect angle of the target are
constantly changing by unknown amounts.

The iterative algorithm handles the two types of errors in different ways.
Additive errors are minimized by reducing the learning rate. In other words, the lower
learning rate causes the additive noise components to be averaged out. Target range
profile fluctuation errors are reduced by increasing the learning rate. This allows the
iterative algorithm to effectively track the range profile. If the learning rate is set too
low, the estimated target range profile converges to an average range profile because
of the random fluctuations. Therefore, a simple algorithm design rule would be to set
the learning parameter in such a way as to minimize the errors due to the additive
noise components without increasing the errors due to target range profile fluctuation.
This, of course, will depend on the level of additive noise contamination and the
fluctuation rate of the target. If the target is slowly fluctuating, then the target can be

extracted from a harsh additive noise environment. If, on the other hand, the target is
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fluctuating rapidly, only a minimal amount of additive noise removal can be
accomplished.

It should also be pointed out that the performance metric (the mean square
error), is calculated based on the present value of the range profile, while the
estimated range profile represents the average range profile. Therefore, the
performance metric is biased toward non-fluctuating targets. The actual representation
of the target range profile may be better than the performance metric implies.

In this chapter, only one target was used for the simulations (Target 1 from
Chapter VII). From other simulations, not shown in this study, the algorithm appears

to perform similarly on various targets.

8.7. References

[1] S. J. Orfanidis, Optimum Signal Processing: An Introduction, pp. 408-410,
McGraw-Hill Publishing Co., 1988.

[2] J. Hertz, A. Krogh, and R. G. Palmer, Introduction to the Theory of Neural
Computing, pp. 197-215, Addison-Wesley Publishing Co., 1991.

[3] Matlab® Reference Guide, The MathWorks, Inc., 1992.

[4]  Xpatch User’s Manual

[5] Signal Processing Toolbox User’s Guide, For Use with Matlab® The
MathWorks, Inc, 1992.




CHAPTER IX

SUMMARY AND CONCLUSIONS

The purpose of this study was to develop a signal processing scheme that
would combine the separate research efforts of low probability of intercept signaling,
low altitude low observable target tracking, and noncooperative target recognition into
a single research effort. The end result of this fusion is a new radar design concept
designated adaptive FSK/PSK signaling. An adaptive FSK/PSK radar system makes
use of matched FSK/PSK signals in conjunction with a gradient descent adaptive
signal design algorithm. matched FSK/PSK signals are ultra wideband pseudorandom
multiple frequency bi-phase modulated signal sequences that have spectral content
specifically matched to the target under track. This use of target-specific information
in the design of radar signals is the salient point of this research effort. 1t allows for
more efficient use of signal power and results in a performance improvement over

existing radar technologies that are matched to the transmit signal only. Since the

“spectral content of the target is not known a priori, the target range proﬁle must be

learned by the radar. This matching of the signal to the target is accomplished
through the use of an iterative (adaptive) algorithm that is based on gradient descent.
Once the radar has adapted to the target (learned the target), the range profile of the

target is known and target identification can take place based on the learned range
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profile. Therefore, an adaptive FSK/PSK radar system can be thought of as a learning
system as opposed to a measurement system. In other words, the radar measurement

is improved as a result of the learning process.

9.1. Conclusions

The pseudorandom sequence structure of the matched FSK/PSK signal, along
with its high time-bandwidth product, makes the radar inherently difficult to detect.
Therefore, the signals can be classified as low probability of intercept. Additionally,
since the transmitter power is used in a most effective manner (signal efficiency is
maximized by target matching), lower peak power signals can be utilized by the radar.
This results in an additional improvement in LPI performance.

In an additive noise environment, matched FSK/PSK signaling provides a
signal processing gain over a baseline radar that utilizes a signal with an impulse-like
ambiguity function. This performance improvement results from the fact that the
signal power is utilized in an efficient manner and the target reflection is enhanced
without enhancing the additive noise. The level of signal processing gain is dependent
upon the spectral complexity of the target. If the target reflects all frequencies equally
well, little processing gain is seen. On the other hand, if the target reflectivity is
concentrated in a few isolated frequency bands, then the processing gain can be large
(on the order of the square of the number of frequencies used in the signal).

In a ground clutter limited environment, matched FSK/PSK signaling performs
better than conventional radar technologies that do not take into account any target

specific information. This occurs because the matched FSK/PSK radar system is
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capable of achieving a theoretical target enhancement of between 1 and K? while the
integrated sidelobe level is increased by a factor of between 1 and K where K is the
number of frequencies used in the construction of the signal. Therefore, in a clutter
limited environment, adaptive FSK/PSK radar systems can achieve performance
improvement factors of between 1 and K. It should be noted that a matched FSK/PSK
radar system and a conventional radar system using a matched filter post-processor are
able to achieve identical performance in a clutter limited environment.

Analysis of predicted real target signature data shows that the use of target-
specific information in the design of the radar signal typically yields average signal to
noise ratio improvements of between 3 dB and 6 dB depending on the target. In a
clutter limited environment, typical improvements are between 2 dB and 5 dB. These
improvements are closer to the low end of the theoretically possible performance
improvements. This is result of the uniform nature of optical region target spectra.
The gains, however, are significant and provide a significant performance increase. It
should be pointed out that in the resonance region, greater gains are expected since
resonance region spectra are typically impulse-like.

The adaptation algorithm derived in Chapter VIII provides a method of not
only designing the optimum signal to excite the maximum response from the target,
but also for measuring the best mean squared estimate of the target range profile.
Through computer simulations, it can be seen that the adaptation algorithm removes
additive noise. The level of noise removal is dependent on the value of the learning

parameter. The smaller the learning parameter (slower the learning rate), the better the
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mean squared estimate. The simulations also show that the random fluctuations of the
target range profile due to random range motion and random incidence angle motion
increase the mean squared error of the estimate. If the learning rate is high enough
for the adaptive algorithm to learn the target range profile before the profile
decorrelates, then the errors are small. If on the other hand, the target decorrelates
more rapidly than the algorithm can learn, range profile estimation errors are
increased. This results in decreased target enhancement due to matched FSK/PSK
signaling. It should be pointed out that the performance metric used in this study (the
mean squared range profile error) is biased towards stationary (nonfluctuating) targets.
It is difficult to ascertain the deleterious effects of range profile fluctuations on an
actual target identification algorithm. The effects may be insignificant since the
adaptation algorithm determines a best mean squared fit to the second order statistics
of the random target fluctuation process within the learning period of the algorithm. It
is of interest to note that a linear averaging scheme would yield a zero result for range
profile estimation since the phase angle of the returns is random from measurement to
measurement.

In conclusion, adaptive FSK/PSK signaling radar is an excellent platform for
fulfilling the future mission of radar: low probability of intercept noncooperative target
recognition. It utilizes low probability of intercept signals in a spectrally adaptive
manner. The ability of the radar to adapt its spectrum makes it possible to enhance
targets thus improving system performance in additive noise environments and ground

clutter limited environments. Finally, the adaptation scheme derived in this study is
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capable of extracting the range profile of the target under track. This is important for
target identification since it is the range profile that is the feature vector used by most

target identification algorithms.

9.2. Future Work

The purpose of this study was to fuse three existing research efforts into a
single new integrated effort. Therefore, significant work remains to be done in this
new research area. Three questions are of particular interest. First, there are several
techniques for optimizing functions other than gradient descent [1]. It would therefore
be of interest to investigate other optimization techniques within the framework of
adaptive FSK/PSK radar. Second, algorithms exist for optimizing the spanning phase
sequence of a signal in order to minimize a known clutter distribution [2]. It is of
interest to determine if theses clutter minimization techniques could be applied to
adaptive FSK/PSK. Third, it is of interest to determine the allowable target variation
in range and velocity versus processing time requirements to determine the allowable
performance envelope for the iterative radar.

It is also of interest to point out some other areas of applicability of matched
FSK/PSK signaling that were not addressed specifically in this study. This work can
be applied to any area of active sensor signaling such as underwater sonar for close-
range mine detection, ultrasound diagnostics in the field of medicine, fault detection in
the inspection of composite materials in heavy industry, and also in the area of laser
radar. Additionally, matched FSK/PSK signaling could be utilized in the field of

spread spectrum communications through harsh fading channels. This application
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would require that the transmitter transmit only in spectral regions that are not

severely attenuated thus improving the signaling efficiency.
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CAR hebb.m

B. J. Skinner
5 November 1994
Mississippi State University

This program simulates the gradient descent signal
design technique derived in Chapter VII. The range
profiles used in the simulation are generated by
xpatchl, and the matlab script read data_ll.m must

be run to read in the xpatchl frequency domain data.
The matlab script trans_data.m must then be run to
transform the data into the time domain. The data
files are aspect dependent in azimuth. Interpolation
is used to determine the range profile for angle data
that is not predicted by xpatch. The azimuth angle
variation is modeled as a 2nd order Butterworth

low pass random process. The range to the target

is also modeled using a 2nd order Butterworth low
pass random process to simulate a range tracking
system with random errors.

ol° ol° o o o° o o\® AP ol° o o o ol° o\® ol° o o\ o o\° o ol

This portion of the script reads in all needed data from
the user.
Mbig=2*K;

k=menu (' SELECT LEARNING RATE’, 'mu=l1’, 'mu=.5",
"mu=.1’, ’mu=.05", ' mu=.01");

---------

if k==
nmu=1;
elseif k==
mu=.5;
elseif k==3
mu=.1;
elseif k==
mu=.05;
elseif k==5
- mu=.01;
end

k=menu (' SELECT SNR’,’-6 dB’,’-3 dB’,’0 dB’,
"3 dB’,’6 dB’,’9 dB’,’infinite’);
var=sqrt (2. (-k+3) /K) ;
if k== .
var=0;
end

hl=zeros (K, 1);

k=menu (' SELECT THE NUMBER OF ITERATIONS’,’50’,
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100" ,7200","400",7800");
Nit=50*2"(k-1);

k=menu (' SELECT TRAINING EPOCHS’,’1’,710" ,.......
"1007,71000");
Nave=10."(k-1);

clear m_recl
clear m rec2
clear m_rec3

for epoch=1:Nave

$For each averaging realization, a new angle track is
%created.
angle bw_s=0.0316;
angle sigma_s=1.779;
[b az, a_az]=butter(2,angle_bw_s);
az_pntri=filtfilt(b_az,a_az,angle_sigma s*......
randn (1, 8*Nit) ) +beam_sector;
11=5*Nit;

$For each averaging realization, a new range track is
%created.
rng_bw=.03l6;
rng_sigma=0.0;
[b rng, a rngl=butter(2,rng_bw);
rng pntrl=filtfilt (b _rng,a_rng,rng_sigma*randn(l,8*Nit));
12=5*Nit; - N

%$Re—initialize all used vectors.
chi=[zeros(1,K/2-1) 1 zeros(l,K/2)]';
az=az(1,:);
score=zeros (1,Nit);
shift=zeros(1l,Nit);
avging=zeros (size(chi));
avg_prof=zeros(size(chi});

%Clear required memory.
clear h2
clear recl
clear rec?
clear corr_score_chi
clear corr_score_avg
clear rec_pwr
clear min_score

$Interpolation of the angle data.
$This should be used only when the angle does




$not vary with the simulation. Otherwise, comment

%$it out as shown below. It should only be done

%to speed up the program.

for m=1:K

h2 (m)=interpl (az,real (11(m,:)),az_pntrl(11l+1)....
,’linear’)+j*interpl (az,imag(ll(m,:))....
,az pntrl(11+1),’linear’);

end B

h prof=h2’;

o\® o o o o o

for i=1:Nit

11=11+1;
12=12+1;

g%Calculate angle interpolation. Should be
scommented out when angle does not vary within
%the simulation. Most time consuming part of
%the code.
clear h2
for m=1:K
h2 (m)=interpl (az,real (11 (m,:))....
(az_pntrl(ll+1l),’linear’)....
+j*interpl (az,imag(ll(m,:))....
,az_pntrl(ll+1),’linear’);
end
h prof=h2’;

126

$Calculate frequency domain modulation for range shifting.

$This is done by first calculating the range dependent

%$linear phase shift in the frequency domain. This

$Modulation is then multiplied by the FFT of the target

$range profile, and the product is inverse-FFT back into

$the range domain. This makes it possible to shift the

$range profile a fraction of a resolution cell.
phase2=exp (j*2*pi* (fo/B+(0: (K-1)) /K) *rng_pntrl (12+1));
h2=ifft (fft (h_prof) .*phasel2’);

$Renormalize the range profile.
h2=h2/sqgrt (h2’ *h2);

%$Add in white Gaussian noise.
noise2=(var)/sqgrt(2)*.....
(randn (size (h2))+j*randn(size(h2)));

%$Gradient descent design method.
chi=chi+2*mu* (h2+noise2) * (h2+noise2) " *chi;
chi=chi/sqgrt (chi’ *chi);




127

clc

%Calculate performance Metrics.
corr_score_chi (i)=max(abs (ifft (fft(abs(chi)).>*....
conj (fft (abs(ref prof))))));

[corr_score_chi(i) corr_score_avg(i)]
perf={i 2*(l—corr_score_chi(i))]

end

%Plot range track erros.
figure (1)
subplot (2,1,1)
plot (1:Nit,rng pntrl (5*Nit+1:12))
axis([1 Nit -1 1])
grid on
subplot (2,1,2)
plot (1:Nit,az pntrl(5*Nit+1:12))
axis ([l Nit beam sector-1 beam_ sector+l])
grid on

%Plot the learning curve
figure (2)
subplot(2,1,1)
plot (1:64, abs (chi))
axis([1 64 0 11)
subplot (2,1, 2)
loglog (1:Nit,2* (l-corr score chi),1l:Nit, rec_pwr."2)
axis ([1 Nit .0001 11) - -

if epoch==
m_rec2=2* (l-corr_score_chil);
m_rec3=rec_pwr."2;

else
m_rec2=[m_rec2; 2*(1—corr_score_chi)];
m_rec3=[m_rec3; rec_pwr."2];
figure (3) -
loglog (1:Nit,mean(m rec2),1l:Nit,mean(m rec3))
axis([1 Nit .0001 17) -

end

end
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read data lin.m
This program is used to read in an Xpatchl data
and form it into a usable Matlab matrix. All four
polarizations are retained (VV, VH, HV, and HH) .
The Xpatch output data must be pre-processed by
the FORTRAN program named field mat.for

o\® ol o\° ol® o\ o®

$Read in the data file.

mﬂfile=input(’Enter the .lin filename: ',’s’);

m file i=[m file ' lln 1;

fld—fopen(m file i,'r");

disp (' Reading the datafile’)

[N]=fscanf (fid,’%d %d %d',[3 1])

X=fscanf (fid,’%g %g %g %9 %9 %g %9 %g %9 %g %g’, [11 inf]);
fclose (fid)

%Strip out the data into separate vectors.
disp ('’ Stripping’)

el=X(1,:);

az=Xx(2, :);

f=X (3, :),

LL=X (4, :)+3*X(5,:);
LR=X (6, :)+3*X(7,:);
RL=X(8 )+J*X(9, )
RR=X (10, :)+3*X (11, :);

clear X

N _freg=N(1l);
N el=N(2);
N az=N(3);

%Reshape the data vectors into matrices
disp (' Reshaping’)

el=reshape(el,N freq,N _el*N_az);
az=reshape (az,N_freq,N_ el*N _az);
f=f(1:N_freq);

LL=reshape (LL,N _freq,N_el*N_az);
LR=reshape (LR, N _freq,N_. Tel*N _az);
RL=reshape (RL,N _freq,N_: Tel*N _az);
RR=reshape (RR,N_freq,N_ el*N _az);
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%trans data.m
This program converts the frequency domain data
generated by read data lin into time domain range
profile vectors.

o\® o\® o\ o

$Transform the data into the time domain.
disp (' Transforming’)
for i=1:N_el*N_az
11(:,1)=fftshift (ifft(
lr(:,1)=fftshift (ifft(
rl(:,1)=fftshift (ifft(
rr(:,i)=fftshift (ifft (RR
end

LL(:
LR(:
RL (:

(:

-~ -~ ~ ~

e
NI
————
————
e ™ -es e

$Normalize the data to unit
pll=ones(N_freq, 1) * (std(1l1l).
plr=ones (N freq,1l)* (std(lr).
(
(

>>>>(D

) *
prl=ones (N _freq,1l) * (std(rl).
prr=ones (N_freq, 1) * (std(rr).
1ll=pll.*11;
lr=plr.*1lr;
ri=prl.*rl;
rr=prr.*rr;

/sqrt (N_freq

nergy.
(-1)) /sqrt (N_freq
(-1))
(-1))
(-1)) /sqrt (N _freq

) ;
/sqrt (N_freq);
)i
)i




params.m
This matlab script contains the initial constants
required by the CAR hebb.m simulation script.

ol° o\® o

B=300e6;
* N=1024;
K=64;
fo=2.0e9;
c=3e8;

T=K/B;
Td=N*T;

beam sector=10;
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$This matlab script reads in a data file containing
$radar cross section data and calculates the target
$enhancement, signal to clutter improvement, and

$LPI performance loss due to Matched FSK/PSK signaling.
$This program is used to calculate the data contained
%in Table 7.1.
m_file=input(’Enter the .lin filename:
m file i=[m file lln 1;

fid= fopen(m file i,'r");

disp (' Reading the datafile’)
[N]=fscanf (fid,’%d %d %d’, [3 11)
X=fscanf (fid, ' %g %g %g %g %9
fclose (£id)

’,’SI);

disp(’Stripping’)
el=X(1,:);
az=X(2,:);
£=X(3, ),
LL= X(4 )
LR=X (6, :)
RL=X (8 )
RR=X(10

clear X

N freg=N(1l);
N el=N(2);
N az=N(3);

disp (' Reshaping’)

el=reshape(el,N freq,N_ el*N az);

az=reshape (az,N _freq,N_. el*N _az);

f=f(1:N_freq);

LL=reshape (LL,N _freq,N_el*N az);

LR=reshape (LR, N freq,N Tel*N _az);
RL=reshape (RL,N_freq,N_ el*N _az);
RR=reshape (RR, N _freq,N_: T el*N az)

num=sum (abs (LL) ."2);
denl=max (abs{(ifft (LL)));
den2=sum(abs (LL) ) ;

Eb= (num. /denl./den2) ."2;
Em=N_freg*num./den2;
sc=num./ (denl.”2) /N freq;

$g %9 %9 %9 %g %g’, [11 infl);

L=1/N_freq./max (abs (LL)

perf=[10*1ogl0 (mean (Eb))
10*10gl0 (mean (Em) )

./ (ones (N_freq, 1) *den2)) ;

10*10gl0 (max
10*10gl0 (max
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10*1logl0 (mean(sc)) 10*loglO(max(sc));.....
10*10ogl0 (mean(L)) 10*loglO(min(L))]
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FIELD MAT.F

THIS FORTRAN PROGRAM READS IN AN XPATCH1 DATA FILE

AND CONVERTS THE DATA INTO A FORM THAT IS EASILY
PROCESSED BY THE MATLAB SCRIPT READ DATA LIN.M.
ADDITIONALLY, THE VERTICAL POLARIZED DATA IS CONVERTED
INTO CIRCULAR POLARIZED DATA IF NEEDED.

COMPLEX VV, VH, HV, HH
COMPLEX RR, RL, LR, LL
COMPLEX J

REAL F, AZ, EL

INTEGER N_FREQ, N AZ, N EL, N_POINTS
CHARACTER*50 JUNK

CHARACTER F FILE*13, M FILE*13, L FILE*13
CHARACTER*5 FILE -

c**********************************************************

C

GET THE REQUIRED DESCRIPTION FROM THE USER

C**********************************************************

PRINT *,’ENTER THE TARGET FILENAME.FIELD’
READ (*,*) FILE

PRINT *,’ENTER THE NUMBER OF FREQUENCIES’
READ (*,*) N_FREQ

PRINT *,’ENTER THE NUMBER OF AZIMUTH ANGLES’
READ (*,*) N_AZ

PRINT *,’ENTER THE NUMBER OF ELEVATION ANGLES’
READ (*,*) N_EL

N_POINTS=N_FREQ* (N Az+1)* (N_EL+1)
F FILE=FILE // 7 .field’
M FILE=FILE // ’.cps’

L FILE=FILE // ’.lin’
print *,F FILE, M FILE, L FILE

PRINT *,’”’
PRINT
*x, ! ! PRINT
*,”THE FILE TO BE PROCESSED IS ",F FILE
PRINT *,’THE OUTPUT FILE IS ",M FILE
PRINT *,’THE NUMBER OF FREQUENCIES IS ", N FREQ
PRINT *,’THE NUMBER OF AZIMUTH ANGLES IS ",N AZ+1
PRINT *,’THE NUMBER OF ELEVATION ANGLES IS ',N EL+1
PRINT *,’THE NUMBER OF DATA POINTS IS ',N:POINTS

PRINT
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C*********************************************************

C OPEN FILES FOR PROCESSING
O ek e e ek ek ok kK K ok ok kR K K ok ok kK K K Kk K K R ok kK K K K kK R R K K Rk Rk K K K
OPEN (UNIT=1, FILE=F FILE)
OPEN (UNIT=2, FILE=M FILE)
OPEN (UNIT=3, FILE=L FILE)

C****************************-k****************************

C READ THE DATA, PROCESS IT AND WRITE IT OUT *

C*********************************************************

J=CMPLX (0.000,1.000)

WRITE (2, *) N_FREQ, N _AZ+l, N_EL+l
WRITE (3,*) N _FREQ, N AZ+l, N_EL+1
DO 1 ICOUNT=I,5

1 READ (1, *) JUNK

ICOUNT=0
10 READ(1,*,END=100) EL, AZ, EL, AZ, F, VV, VH, HV, HH
ICOUNT=ICOUNT+1

LL=.5*((HH J*VH) - (HV J*VV) )
LR=.5* ( (HH J*VH)+J*( —-J*VV))
RL=.5%* ( (HH+J*VH) —=J* (HV+J*VV) )
RR=.5*((HH+J*VH)+J*(HV+J*VV))
WRITE (2, *) EL, AZ, F, REAL(LL), AIMAG(LL),
1 REAL (LR), AIMAG(LR),
"2 REAL (RL), AIMAG(RL),
3 REAL (RR), AIMAG (RR)
WRITE (3,*) EL, AZ, F, REAL(VV), AIMAG (VV),
1 REAL (VH) , AIMAG (VH),
2 "REAL (HV) , AIMAG (HV),
3 REAL (HH) , AIMAG (HH)
GOTO 10

100 PRINT *,’ALL DONE’

PRINT *,’"YA KNOW..... THERE WERE ’, ICOUNT,’ DATAPOINTS’

END -




